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ABSTRACT

Numerous methods exist to calculate near-fields from two-dimensional objects,

however, relatively long computation times are generally required for reasonable

accuracy. Computation is slowed primarily due to the calculation of near-fields using

a singular kernel. The proposed work will develop an alternate, more efficient

algorithm for calculating the near-fields from surface distributions. The Singularity

Extraction Technique (SET) analytically extracts the contribution due to the near-

singularity and implements the remaining portion numerically. Additionally, field

contributions due to regions far removed from the field point are extracted out to

further reduce the computational time. The implications here are a significant

reduction in CPU time as well as improved accuracy. Computer programs are

developed to implement and validate the SET. Testing includes comparison of the

SET with analytic solutions to electromagnetic scattering for typical objects.
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I. INTRODUCTION

A. BACKGROUND

Electromagnetic scattering by dielectric objects is of great interest and is the

primary focus of the present work. Predicting radar scattering characteristics of an

arbitrary object is of particular interest in many areas of research today. Two specific

areas which will benefit are Radar Target Classification, which exploits the signature

of the targets scattered field for identification and Computer Aided Design (CAD)

of electromagnetic structures.

Generally, three approaches exist to determine scattering characteristics

[Ref. 1]:

1. Theoretical calculation

2. Dynamic experimentation

3. Static experimentation

The most practical method is certainly that of theoretical calculation. Although the

benefits of theoretical methods are obvious, it is critical that an accurate and robust

model be developed as with physical models of static experimentation. The objective

of this research is to produce an accurate theoretical model for computing the

scattered fields very close to a scattering body given the surface fields.

• w iI



B. PROBLEM

The requirement to understand and predict scattering characteristics, namely,

the scattering width or radar cross section, of a two-dimensional (2-D) object given

its physical parameters, is the overall goal of this work. This is accomplished by first

determining near-fields of the object, which are directly responsible for the charges

and currents induced on the surface [Ref. 1]. Rigorous solutions to scattering by

dielectric objects are available, but are restricted to few simple geometries

[Ref. 2]. Numerous techniques exist to determine approximate near-field solutions

such as physical optics, differential equations, and integral equations, to name a few

[Ref. 31. At one time, general solutions to electromagnetic boundary value problems

were considered too unreliable and inaccurate, except for asymptotic cases

[Ref. 41. The advent of digital computers however, has facilitated techniques by

which many of these problems can be solved.

Quantities associated with the near-fields are sources, surface currents and

surface charges [Ref. 3]. The fields of interest associated with the scattering body can

be represented by integrals in terms of these quantities. Numerical solutions to these

integrals describing near-fields from 2-D sources can be applied to arbitrary dielectric

objects, however, evaluation of these integrals often proves difficult due to the

presence of singular kernels in the integrands.

Alternate, more efficient forms of the integrals used to determine near-fields

from 2-D sources will be developed. Singularities which occur as the source point

approaches the field point are extracted analytically. Also, contributions to the near-

2



field along asymptotic regions of the object surface are subtracted out. Numerical

algorithms of the resultant integrals are developed for arbitrary geometries. Testing

and validation of the model is accomplished by comparison of results with those of

exact theoretical solutions.

3



II. FORMULATION

As stated in the previous chapter, there is a need to efficiently evaluate the

near-fields from 2-D cylindrical objects. Numerous methods exist for accomplishing

this. One widely used approach is that of a Green's function contour integral, which

is the approach taken here.

Direct numerical implementations of these integrals are possible through the

use of digital computers, however they are generally inefficient due to 1) near-

singular functions in the integrand, and 2) significant field contributions from the

asymptotic regions of the contour (regions on the source, far away from the field

point). An alternate approach to the Green's function integral is developed here.

Since the integrand exhibits its singular behavior near the field point (designated by

Q), an alternate expression is developed for this portion of the contour. Also, the

contribution due to the asymptotic portion of the surface integral can be extracted

analytically. These two manipulations of the Green's function integral should greatly

increase the speed of the numerical integration with minimal affect on accuracy.

A. NOMENCLATURE

Consider the arbitrary 2-D cylindrical object of Figure 1. The shape of the

object varies only in the x-y plane and is infinite in the z-direction. The perimeter

of the object is defined by the contour C. It is required to calculate the

4
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Figure 1. Two-Dimensional Cylindrical Object
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field at point Q given the field and its normal derivative on C. In the subsequent

development, the contour C is divided into two segments, C1 and C2. Segment C2

is a small portion of C which lies directly below the field point Q. Contour C1 is the

remaining portion of C. Contour C2 is a distance of 28 in arc length. The field point

(Q) lies a distance d along the outward normal from the surface node point (q).

The incident wave is assumed to be a plane wave propagating in the direction

of positive x-axis. The term field is defined to be E, in the case of TM polarization

and H, in the case of TE polarization. The wavenumber in free space is denoted by

ko, where ko = jc, w being the radian frequency of the incident wave, and c the

velocity of the electromagnetic wave in free space. An exp(jUt) time dependence is

assumed throughout. The total field, o(, is written as the sum of the incident field,

va), and the scattered field, (s).

B. GREEN'S FUNCTIONS

Electromagnetic phenomena are concisely described by Maxwell's equations and

appropriate boundary conditions [Ref. 3]. These equations can then be solved with

a number of second-order uncoupled partial differential equations. The difficultv

with this approach is that the solutions to these partial differential equations are, in

general, slowly converging infinite series which yield little insight into the behavior of

the specific function. An alternate and much more useful solution to the partial

differential equations is obtained through the use of Green's functions which have

proven invaluable in many areas of science and engineering. This approach provides

6



practical closed form solutions to differential equations, often in the form of integral

equations.

The general concept of the Green's function technique is to obtain a solution

to a partial differential equation by applying an impulse source function (Dirac delta)

as a driving function [Ref. 3]. The response to this driving function is termed the

Green's function. The solution to the differential equation is thus a superposition of

the impulse response solution at each location, which in the limit is an integral. The

Green's function is therefore analogous to the impulse response or transfer function

of a linear system [Ref. 3]. It should be noted that the Green's function may occur

in various forms, such as finite explicit functions or infinite series, depending upon the

particular problem. All forms, however, yield the same results.

C. GREEN'S FUNCTION CONTOUR INTEGRAL

The scattered field, es), from an arbitrary object in free space, as in Figure 2,

satisfying Helmholtz's equation [Ref. 5]

V2(s) + k2 *(s) - 0 (1)

is

-(11p iG(P~p1)2-*- - */ 'dl,(2)

where 4f in the integrand may be either total or scattered field on the surface of the

object, and G( I P" ) is the Green's function given by

7
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1(l' H t)lkt, - P/1) (3)

4j

and

J_ .,i/• (4)

and

G , n 1 H(p -''I) , (5)
an'

and H'121 and H, (2) are Hankel functions of orders zero and one, respectively.

D. ASSOCIATED INEFFICIENCIES

Inherent difficulties exist in evaluating Equation (2) directly by means of

numerical integration. The imaginary portion of the Hankel function rapidly

approaches negative infinity as the argument approaches zero. This will be the case

when the field point (Q) approaches the perimeter contour of the object and

consequently, large CPU resources are required to compute the near-field surface

integratirns [Ref. 6]. This is nrimnrilv fine to the large number of complex
.... . .. . . ... . . . .. --. .-_ ... . . - - - _. .. . .___ - - -a -. . .

operations required for each step in the numeric quadrature.

In this thesis, an efficient scheme to compute the near-fields is developed. The

general approach to this problem is to divide the object into two surface contours,

C1 and C2, as in Figure I [Ref 7]. Contour C1 is numerical!y integrated

without difficulty since R never approaches zero along this contour. An alternate.

9



more efficient method of calculating the field contribution due to contour C2 must

then be derived. This is the primary emphasis of this work and is detailed in the next

section.

The additional problem of large CPU requirements is addressed as well.

Morgan [Ref. 6] proposes "to adaptively neglect the integration contributions outside

a local neighborhood of the field point." Since the field contribution dies away with

increasing distance from the field point, the integrations may be confined to a limited

contour with minimal reduction in accuracy. This concept is addressed further in the

development of the computer algorithm in Chapter III.

E. SINGULARITY EXTRACTION TECHNIQUE

Consider the infinitely long, two-dimensional arbitrary object of Figure 3. As

previously stated, the scattered field at any point (Q) can be found from Equation (2)

by integrating along the entire contour C. This contour can be divided into two

distinct contours, C1 and C2. Equation (2) can be separated into two equations as

an' an C2 (6)
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Numerical integration of the second term of Equation (6),

f'2' * jl- ,-I (7)

where

'f GA i(8)

and

12 f* ac dI(9)

is inefficient for near-field calculations, thus, an alternate form is desired [Ref. 7].

For small 8, contour C2 approximates a linear segment as depicted in Figure

4. Using the small argument approximation of the Green's function [Ref. 5],

G(kR) -1[1 - -Yn(kR) . (10)

Equation (8) can be written as

f(Ga)d/ " j ar(q) f [I ln(k t2- ]dt . (11)
J - anf 4 an _8 t

This leads to the final result,

(G. ____ [ l[2 + dlo)2 (12)

12
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The small argument approximation for the normal derivative of the Green's

function is [Ref. 51

WG(kuR d (13)

n' 27R 2

Thus, using Equation (13), it can be shown that Equation (9) can be written

f D() G d dt)
an' 2n ( (t 2 +d) (14)

*(q) arctan( ).

Combining Equations (12) and (14) produces the desired alternate form of

Equation (7),

f (Gal - * (G)d l - - Q){[-dct(d)] (15)I n d(15

- Iin[ (k8)2 +(kod21} *(q) actai(8
2In 21 I

Substituting Equation (15) into Equation (6) yields,

)(Q) "f (anfG a* OG ad I . (q) II { darctan(6

CIsQ -n an / an 7t - d (16)

In[(kb)+(k#A2]-_ *1q)arctan

2n . 2 71 d..tnt¢ cnb fiinl

At this point it should be noted that the integral in Et. (16.A) can b efficient

evaluated by means of numerical integration. The remaining terms represent the

contribution from contour C2. The effects of the field point approaching the object

14



surface is represented by taking the limit of Equation (16) as d approaches zero,

which yields the scattered field on the perimeter contour

'(s)(q) fG- -* G- d *(q) _ 8 a*(q) I 1 - ln(koS)2_] (17)
c1 (in' 2 n 2'

where

-G(R)Id. (18)

and

aG a- (19)
an / n

a d-.O

Subtracting Equation (17) 'i ,m Eqvatinn (16) and rearranging, it can be shown

that the scattered field at node Q on the boundary contour of the object is

*(s) (Q) -f (G - -6 * *(s,),G - -5G)]dI

- 4, (s2 Iacan() (20)

+ a*(s)(q) darctan- + In 1 +
it an 8

If 4f in the original integral, Equation (2), is chosen to be the total field on the

perimeter, Equation (20) becomes

15



*(1()- f [G - dii't

+ *(s)(q) - w(q)[ arctan( )- } (21)

an 6 d 2

Equations 20 and 21 represent more desirable forms of Equation (6), exclusive

of the unruly integral over contour C2. In this form, the field contribution from

contour C1 is easily evaluated by numerical integration. The contribution from C2

is now in the form of a simple analytic formula, thus eliminating the previOus

difficulties of integrating a near-singular function. This form permits efficient

computer evaluation of the Green's function contour integral without sacrificing

speed and accuracy.

16



III. COMPUTER CODE DEVELOPMENT

The ultimate goal of this work is to develop an efficient method of evaluating

the near-zone scattered fields from an arbitrary 2-D object. Now that the analytic

formulation is complete, a method of computer evaluation is presented here.

Algebraic manipulation of the integrand in Equation (20) yields a form of the integral

which can be easily programmed for the large number of iterations required. The

program to evaluate the scattered field is designed to handle any 2-D object whose

geometry is specified discretely. Initial evaluation was accomplished utilizing a group

of subroutines to generate the required input parameters for circular cylindrical

geometry. The circular cylinder is chosen due to its simple geometry as well a- the

availability of exact solutions for comparison with calculated results.

A. IMPLEMENTATION

In order to evaluate Equation (20) by means of a digital computer, a discrete

version of the scattering object is considered as seen in Figure 5. The object is

initially divided into N equal length segments Sk, defined by N + 1 nodes on the

perimeter contour C. The scattered field is found at each point Qk on the boundary

contour which is associated with a node point qk on the perimeter contour.

The SET program determines the scattered field, 'Ie)(Qk), for the k-th field

point Qk by summing the contributions due to contours Cik and C2 k. Contours C1,

17
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and C2 k vary according to the specific point Qk in question as illustrated in Figure 3.

The contribution to the field, ,S)(Qk) , at Qk due to contour C2k is determined by the

analytic terms of Equation (20). Contribution from contour Cik is found by means

of numerical integration over each segment, Sk, which make up the contour. The

total field contribution due to Cik is the sum of the integrations. The resultant

scattered field, e"3)(Qk), is thus the sum of the contributions from Cik and C2 k.

Before Equation (20) can be evaluated by means of numerical techniques, each

value required as input must be specified discretely. Each object considered must be

described geometrically and electrically by discrete quantities. Both contours (i.e.

perimeter and boundary) of the object are defined by a set of cartesian coordinates

which are individually called nodes. Discrete field quantities at each node are

determined as well.

The discrete geometry of the object must first be determined. Equally spaced

coordinate nodes for typically shaped 2-D objects such as a circle, shell, square or

slab can be determined using routines similar to those in Appendix A. The input

consists of the number of nodes desired, the radius of the object, and the distance

between the perimeter and boundary contours known as the offset distance. The

output is the (xy) coordinates of the perimeter contour and the (sr) coordinates of

the boundary contour. The coordinates for each node are stored in the (N x 4)

matrix

19



X, y1 s1 r,

XYSR- X2 y2 S2 r2  (22)

XN YN SN r.

For the initial development, the scattered field, ,t/s), and its normal derivative,

(3e)/c/n on the perimeter contour are determined using infinite series methods

outlined in Appendix B. The values of * and a,/an corresponding to each perimeter

node point are determined and placed in the (N x 2) matrix

*2 a*2(23)
PSI - 2 on (3

8n

A set of end nodes for contours Cik and C2 k, as in Figure 6, must be

determined for each boundary contour node qk. The end nodes are found by

extending a distance 8 along the local tangent on either side of qk as in Figure 7.

Integration along contour C1 is performed in the clockwise direction, thus the end

nodes must remain distinct. The end nodes are therefore placed in the (N x 4)

matrix

20
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X1 IYi X1 Yi

PENDS- X2 Y2 X2 y2 (24)

XN YN XN YNJ

where (X+k, Y'k) corresponds to the start node of contour CI and (X-kyk_) correspond

to the last node of CI, assuming a clockwise direction.

Corresponding values of o and a,//&z are also required at each end node.

These are obtained using a linear approximation and are stored in the (N x 4) matrix

*(X IYI) - -(Xi(Yi)
on an

a,(x;,y;) clip(._, )

S- x0,y) ) an (25)

_____,___ aa (XyN)
P(XN,YN a ) 4s(xN,yN)+ a an

At this point, the quantities required for integration on CIk arc available but

must be properly arranged for each field point Qk considered. A new (N x 2) matrix

of nodes describing contour Cik is defined as
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x t Yk

Xk+1 Yk,1

PNODC2 - (26)

Xk- Yk-1

Xk Yk

Similarly, the (N x 2) matrix of field quantities corresponding to the nodes of contour

Cik is defined as

(X4,y+) a*(xy)
an

aqj((xk+1,yk+I)*(Xk~lYk 1) a* Xknykl

PSIC2 - . (27)

*(Xk-1Yk-1) a*XkPy-

an

These two matrices are redefined for each integration of contour Cik corresponding

to the desired field e)(Qk).

B. CIRCULAR CYLINDRICAL GEOMETRY

One of the requirements for evaluating the Green's function contour integral,

Equation (2), and hence the integral in Equation (20), is the determination of the

field, qf, and its normal derivative, &crj/&z, on the object surface. This is by no means

trivial, even for the simplest objects. However, exact solutions for qr and ad'/&z do
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exist for circular cylindrical geometry (see Appendix B). These solutions are in the

form of convergent infinite series and are relatively straight forward to calculate by

means of a computer [Ref 3]. Also, the coordinates for equally spaced nodes along

the perimeter of the circle are quite simple to calculate. These are the primary

reasons the circular cylinder is utilized for the initial testing and evaluation phase.

C. NEAR-FIELD PROGRAM

The software written to evaluate the accuracy of Equation (20) consists of two

parts. The first part t,:4,kes care of reading the input parameters, calculating the

potentials on the ,erimeter and boundary contours, and establishing the proper

sequence ;% the data matrices input to the second portion of the program. This is

acco-.iplished utilizing a series of subroutines which perform each of the initial

,alculations and data manipulations.

1. Program NEARFLD

NEARFLD is the main controlling program coupled with a group of

component subroutines. Each routine is called to perform a specific task required

to generate the input to the SET subroutine. Once the input data is available, the

SET subroutine is called N times to calculate the value of 4r(Qk) for each discrete

field point on the boundary contour. NEARFLD, as it appears in Appendix C, is set

up for the circular cylindrical geometry. It can easily be converted to handle any

geometry by replacing CIRCLE with an alternate coordinate generation subroutine

from Appendix A.
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2. Subroutine CIRCLE

This subroutine computes the (xy) coordinates of the discrete node points on

the circular perimeter and boundary contours. The input parameters consist of the

normalized radius of the perimeter contour, the number of discrete nodes, and the

normalized offset distance between the perimeter and boundary contours. The

output is a matrix containing the node coordinates on the respective contour.

3. Subroutine SCAT

This subroutine utilizes the method outlined in Appendix B to calculate an

exact solution for the scattered fields from a dielectric circular cylinder. SCAT is

initially called to calculate the fields on the boundary contour which are used for

comparison with the fields calculated by the SET. It is again used to find the fields

on the perimeter contour which are input to the SET.

4. Subroutine DSCAT

DSCAT calculates an exact solution of the normal derivative of the

scattered field, ai/s)/bz, on the surface of the circular cylindrical object utilizing the

method of Appendix B. This value is required input to the SET.

5. Subroutine INCID

Similar to SCAT, subroutine INCID calculates the exact solutions for the

incident field from a plane wave. This routine is only required when evaluating

Equation (21), where the total field is used on the right side of the equation.
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6. Subroutine DINCID

DINCID calculates the exact solution of the normal derivative of the

incident field for a plane wave impinging on an object. It is utilized only when using

Equation (21) to calculate scattered field.

7. Subroutine ENDNODES

For each point qk, the endpoints of the contours Cik and C2k must be

defined. The function of ENDNODES is to calculate the (xry) coordinates of these

endpoints. This is accomplished by calculating the (xy) coordinates of the points ±

5 away from the node qk, along the tangent line as in Figure 5. These values are

used by REORD as the first and last values in the coordinate matrix input to SET.

8. Subroutine NODEPSI

Since a new set of nodes are created by ENDNODES, corresponding

values of q" and aqfa&z must be calculated for each new endpoint. NODEPSI does

this by making a linear approximation of each new value. These values are used by

CREORD as the first and last values in the potential matrix input to the SET.

9. Subroutine REORD

For each boundary point Qk, new perimeter contours Cik and C2k must be

defined. REORD accomplishes this by manipulation of the coordinate matrix

generated by CIRCLE. Contour Cik is now defined by endpoints from ENDNODES

and the reordered coordinates, excluding node qk. The new arrangement of

coordinates is utilized by the SET. This procedure is repeated for every node.
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10. Subroutine CREORD

This subroutine performs operations similar to those of REORD. A

rearranged matrix containing values of Vf and aqfi&z corresponding to the reordered

coordinate matrix is generated for every node.

11. Subroutine BES

This subroutine calculates the ordinary Bessel functions J(X) and Y(X),

and their first derivatives for integer order "n" from n = 0 to N for the real argument

X [Ref. 8]. This subroutine is utilized by SCAT and DSCAT.

D. SINGULARITY EXTRACTION PROGRAM

The second part of the main program is the actual implementation of Equation

(20). It consists of a group of subroutines and functions (Appendix D) which

calculate the near-fields, e)(Qk), for a lossless dielectric object, given the appropriate

input data. This group of subroutines can easily be incorporated into any main

program which requires the evaluation of a "near-field' Green's function contour

integral. The subroutine which comprise this portion of the program are described

below.

1. Subroutine SET

This subroutine is designed to solve the series of expressions listed in

Appendix E which represent an expanded form of Equation (20). For each field

point considered, the subroutine first calculates the analytic portion of Equation (20)

which is the field contribution for contour C2k. Next, the field contribution from each
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segment of contour Cik is calculated by solving each of the 12 integrals in Appendix

E. (Note: A correction factor of [-1] is required for the integral term of Equations

(20) and (21). The cause of this abnormality was not determined at the time of this

publication.) When the source point is greater than some EPS1 from the field point,

the integrands in Equation (20) become quite small resulting in an insignificant field

contribution from the individual segment. In this case, the integration is bypassed,

thus reducing CPU time. The total field contribution from Cik is the sum of the

integration along each segment of the contour. The field contribution from Cik and

C2 k are added yielding the scattered field, qe)(Qk).

2. Function CADRE (SIMP, TRAP)

Due to the discontinuous nature of many of the integrands in Appendix E,

an adaptive integration scheme may be required. The adaptive numerical integration

routine, CADRE [Ref. 9], is used here to successfully handle all jump

discontinuities encountered. The integration routines SIMP and TRAP [Ref. 81,

which apply Simpson's rule and the Trapezoid rule, respectively, can be used in the

place of CADRE depending on the nature of the integrand. For most cases

evaluated in this work, the subroutine TRAP provided accurate results.

3. Functions ARGxx

These functions evaluate the associated integrand for each of the integrals

of Appendix E.
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4. Function BESSJO

This subroutine is used to calculate the zero-order Bessel function required

in the ARG functions [Ref. 8].

5. Function BESSYO

This subroutine is used to calculate the zero-order Neumann function

required in the ARG functions [Ref. 8].

6. Function BESSJ1

This subroutine is used to calculate the first-order Bessel function required

in the ARG functions [Ref. 8].

7. Function BESSY1

This subroutine is used to calculate the first-order Neumann function

required in the ARG functions [Ref. 8].

E. INPUT/OUTPUT

Execution of the NEARFLD program for circular cylindrical geometry requires

a set of input parameters used to define the system. The input is via a screen

prompt for each of the following variables:

1. (A) Radius of the cylinder in meters

2. (FO) Frequency of the incident plane wave in Hertz

3. (N) Number of nodes considered
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4. (L) 2 ̂  L-1 iterations of the trapezoid rule per segment Sk
Note: This input is not required when utilizing SIMP or CADRE integration
routines.

5. (FAC) Factor used to calculate the upper limit of the summation in the 'exact'
scattered field computations
Note: A value of 1.5 to 2.0 is generally sufficient for accurate results.

6. (ER) Relative permittivity of the object
Note: This input can be modified to allow for complex values.

7. (MR) Relative permeability of the object
Note: This input can be modified to allow for complex values.

8. (DELTA) Length of the segment 8 in meters in Figure 3

9. (OFFSET) Offset distance (d) in meters as in Figure 3

10. (EPS1) Factor used to determine if integration of a specific segment of
contour C1 is to be bypassed
Note: This factor is used to increase the speed of the near-field calculations.

The output of the program is written to four data files, each of which is

designated by the user. The following is a description of the information contained

in the individual data files:

1. The scattered field at each field point on the boundary contour as calculated
by the 'exact' solution

2. The incident field at each node point on the perimeter contour as calculated
by the 'exact' solution

3. The scattered field at each field point on the boundary contour as calculated
by the NEARFLD and SET programs

4. The first and second terms of Equation (20)
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IV. PARAMETER CHARACTERISTICS

The near-fields from an object are a function of many different parameters.

These parameters are defined by the specific geometry and composition of the object,

the incident field impinging on the object, and the field point considered. Artificial

parameters are created as well in the formulation of the numerical technique used

to solve the problem. In this chapter, each of the parameters, real and artificial,

which have some affect on the output, are considered. The expected influence on

the system, as well as the limitations each impose on it are discussed.

A. PHYSICAL CONSIDERATIONS

Certain physical characteristics are inherent to the particular case considered.

These parameters are strictly a function of the physical properties of the object and

the type of waveform present.

1. Relative Permittivity (e,) and Permeability (Mt,)

The primary affect of E, and 4r on the system, is that of altering the

wavelength within the dielectric object. The wavenumber in the dielectric is defined

by the relationship

k- 2f , , (28)
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where f is the frequency of the incident wave. Variation of c, or , has the combined

affect of adjusting the dimensions of the object by a factor of e, L - which in turn

alters the observed surface currents on the object. This requires some adjustment of

the number of node points considered in order to achieve a suitable sampling rate.

2. Wavelength

The wavelength (.) of the incident wave also has a direct affect on the

electrical dimensions within the dielectric. Longer wavelengths have less variation

over the object and thus, in general, produce less variation in the electric currents on

the surface of the dielectric. Higher frequency electromagnetic waves with shorter

wavelengths excite more variation in the surface currents. This has the same net

effect on the system as E, and Ar Thus, the number of nodes must be adjusted to

produce an acceptable sampling rate.

3. Dimensions

The physical dimensions of the object obviously have an affect on the

near-fields. The circular cylinder is completely defined by its radius (a). The offset

distance (d) of Figure 3 defines the boundary contour. Each dimension can be

expressed in terms of wavelength to provide a means of normalization. Utilizing this

wavelength normalization, the object is completely described by the quantity k0a.
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B. NUMERICAL CONSIDERATIONS

As a result of the derivation of Equation (20), a restriction is placed on koR and

kR, where R and R are defined in Figure 3. This is a result of the approximation

of the Hankel function used to calculate the field contribution from contour C2. The

argument, koR, must be << 1. This is not due to near-field considerations, but

simply a result of the small argument approximation of the Hankel function. The

effects due to the value of k0R on the system are investigated in Chapter V.

The quantity EPS1 is an adjustable parameter introduced in the SET program.

It provides a means to bypass integrations of segments on C1 which provide

negligible contribution to the near-field. This feature can be disregarded by making

EPS1 larger than the diameter of the object.

The sampling rate (i.e., the number of nodes per wavelength) must be taken

into consideration to produce accurate integration results. The linear approximation

of yi and aOiI/a on the perimeter require a large number of segments to describe

these quantities on the surface of the object. This is accomplished by specifying a

sufficient number of nodes, thus reducing the differential interval. The quantity

koa e_ ,rl, represents the number of wavelengths in the dielectric around the

perimeter. A minimum of four nodes per wavelength,

koa , 1 (29)

N 4
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should be used to obtain an accurate representation of the field quantities on the

object surface.

35



V. TESTING AND VALIDATION

The difficulty in evaluating the validity of Equation (20) is due to a deficiency

of established near-field solution techniques. Solutions to specific problems

[Ref. 10] do however exist and are the focus of the validation phase. A number of

different testing methods are developed and utilized in order to thoroughly validate

the Singularity Extraction Technique. A variety of TM cases are evaluated, each of

which is characterized by a set of representative data outlined in Table 1 and Table

2. The effects of each of the parameters on the system are also analyzed.

TABLE 1. INCIDENT FIELD INTEGRATION PARAMETERS

CASE FIGURE ka k08 ked ksp 6r IL' NODES

IF-I 9 0.6283 0.0628 0.0628 0.6912 2 1 36

IF.2 10 0.6283 0.0628 0.0628 0.6912 2 1 72

IF-3 11 6.2532 0.0628 0.0628 6.3460 2 1 72

IF-4 12 6.2832 0.0628 0.0628 6.3460 2 1 144

IF-5 13 62.8319 0.0628 0.0628 62.8947 2 1 72

IF-6 14 62.8319 0.0628 0.0625 62.8947 2 1 180

IF-7 15 62.8319 0.0628 0.0628 62.8947 2 1 360
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TABLE 2. SCATTERED FIELD INTEGRATION PARAMETERS

CASE FIGURE ka k05 kod kap er Air NODES

SF-I 16 6.2832 0.0314 0.0628 6.3460 2 1 36

SF-2 17 6.2832 0.0628 0.0628 6.3460 2 1 36

SF-3 18 6.2832 0.3142 0.0628 6.3460 2 1 36

SF4 19 6.2832 0.6283 0.0628 6.3460 2 1 36

SF-5 20 6.2832 0.0314 0.3142 6.5973 2 1 36

SF-6 21 6.2832 0.0628 0.3142 6.5973 2 1 36

SF-7 22 6.2832 0.3142 0.3142 6.S973 2 1 36

SF-S 23 6.2832 0.6283 0.3142 6.5973 2 1 36

SF-9 24 6.2832 0.0314 0.0628 6.3460 2 1 72

SF-10 25 6.2832 0.0628 0.0628 6.3460 2 1 72

SF-I 26 6.2832 0.3142 0.0628 6.3460 2 1 72

SF-12 27 6.2832 0.6283 0.0628 6.3460 2 1 72

SF-13 28 62.8319 G.0628 0.0628 62.8947 2 1 90

SF-14 29 62.8319 0.0628 0.0628 62.8947 2 1 180

SF-I5 30 62.8319 0.0628 0.0628 62.8947 2 1 360

SF-16 31 6.2832 0.0628 0.0628 6.3460 5 5 18

SF-17 32 6.2832 0.0628 0.0628 6.3460 5 5 36

SF-18 33 6.2832 0.0628 0.0628 6.3460 5 5 72

SF-19 34 6.2832 0.0628 0.0628 6.3460 5 5 18)

SF-20 35 6.2832 0.0314 0.0628 6.3460 2 1 36

SF-21 36 6.2832 0.0628 0.0628 6.3460 2 1 36

SF-22 37 6.2832 0.0314 0,0628 6.3460 2 1 72

SF-23 38 6.2832 0.0628 0.0628 6.3460 2 1 72

SF-24 39 6.2832 0.0628 0.0628 6.3460 2 1 18)

SF-25 40 62.8319 0.0628 0.0628 62.8947 2 1 360
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A. HARDWARE AND SOFTWARE

All programs utilized in this thesis are written in Fortran 77 language. An NDP

Fortran-386 compiler is used to compile, link, and execute the code. All testing is

conducted on an 80386-based personal computer employing a Weitek coprocessor.

B. HANKEL FUNCTION APPROXIMATION

The small argument approximation is made for the Hankel functions utilized

in the development of Equation (20). This requires that the argument, koR, be

< < 1, thus placing a bound on the term 8, which defines C2, and on the offset

distance, d, specifically

[ kR - ko2 +d2 ].1 (30)

The question which arises is, how close to zero must the argument be for

acceptable accuracy of the Hankel function approximation. A comparison was made

between the small argument approximation and a direct power series solution of the

Hankel function H 2 (k 0R). The results for several values of the argument are listed

in Table 3. The relative error of the approximation is quite acceptable for arguments

(koR) of less than 0.3. In general, this restriction was adhered to for all testing and

validation conducted within this research.
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TABLE 3. HANKEL FUNCTION APPROXIMATION

k#R Relative Error

0.01 0.023

0.02 0.027

0.03 0.029

0.04 0.031

0.05 0.033

0.08 0.036

0.10 0.037

0.30 0.037

0.50 0.059

0.80 0.192

1.00 0.326

C. INCIDENT FIELD INTEGRATION

One way to test the performance of the SET is to compare its results with those

of proven theory. Consider the case depicted in Figure 8, where the hypothetical

boundary D is in a homogenous medium (constants e, and ,). Since there is no

material interface, the scattered field due to D is zero and the only field present is

the incident field. Next, consider determining the scattered field, jS)(Q), using

Equation (21). In this case, the total field on the right side of the equation is equal

to the incident field alone. Evaluation of Equation (21) should yield e/()(Q) = 0.

The computer program INTEST (Appendix F) was developed to evaluate

Equation (2) for V/) = q/). The term 'exact', in the figures that follow, indicates the

near-field calculation using Equation (2). Equation (21), which considers the total
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Figure 8. Perimeter Contour or Hypothetical Object
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field (or = O0) on the perimeter contour, was evaluated for the case of the total field

on the object equal to the incident field alone. As described above, the scattered

field on the boundary contour for both procedures must be zero.

Several cases were considered, first using the program INTEST and then the

program NEARFLD for circular cylinders. Comparisons of the average magnitudes

of the scattered field, e/s)(Qk), calculated using each method are outlined in Table 4

where

I*(s)(Qk)I. (31)

Note that the values for each are of the same order of magnitude in cases IF-1 - IF-4.

The values also approach zero as the number of nodes is increased. This is due to

the better approximation of qf corresponding to the increased sampling rate as

discussed in Chapter IV.
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TABLE 4. AVERAGE SCATTERED FIELD

OAS)s

CASE Exact SET

IF-i - 0 0.02786

IF-2 - 0 0.02683

IF-3 0.02024 0.02887

IF4 0.00092 0.02895

IF-S 22.94755 0.22323

IF-6 12.21451 0.04413

IF-7 0.01239 0.02950

Figure 9 depicts the low frequency (f = 30 MHz) results for a dielectric cylinder

with k0a = 0.628. The scattered near-field on the boundary contour (kop = 0.691)

calculated by INTEST is equivalent to zero as expected. The scattered near-field

calculated using the SET is shown as well. Comparison of the two methods for this

near-field case exhibit good agreement with theoretical results, specifically, zero

scattered field. Figure 10 contains the results for this case with an increased number

of nodes. Both cases produce good results since an adequate number of sampling

points were considered for each.

Figure 11 shows the near-field for the medium frequency (f = 300 MHz) case

with koa = 6.283. Both methods, INTEST and SET, are equivalent to zero. Figure

12 is the same case for an increase in nodes. Again, there is no significant divergence

since, in both case, the sampling rate was sufficient to obtain an accurate solution.
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Figure 9. Near-Field for Circular Cylinder, Incident Field Integration
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Figure 10. Near-Field for Circular Cylinder, Incident Fieid Integration
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Figure 11. Near-Field for Circular Cylinder, Incident Field Integration
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Figure 12. Near-Field for Circular Cylinder, Incident Field Integration
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The high frequency (f = 3 GHz) cases for koa = 62.832 appear in Figures 13-

15. The results obtained from INTEST and SET for two undersampled cases appear

in Figures 13 and 14. Both methods produce large inaccuracies due to

undersampling. Figure 15 depicts a high sampling rate which produces the near zero

results expected with the exception of the forward scattering direction, where the

results diverge somewhat. The method using INTEST has a rapid convergence to

zero as the sampling rate is increased, where the SET is near zero, but still invalid.

Variation of other parameters have no significant effect on the above test cases.

D. NEAR-FIELD CALCULATIONS

The next phase of testing includes comparison of near-field calculations using

the SET program with those of exact series solutions. Numerous cases were

considered to observe the effects each parameter has on the near-field results.

Again, circular cylindrical geometry was utilized due to the availability of accurate

near-field solutions. Plots depicting the normalized near-fields for each case are

included. The analytic and integral portions of Equation (20) are also plotted in

some select cases to show that significant contributions from both terms of the

equation are present in the SET generated near-field.

The initial tests were conducted for a medium frequency (f = 300 MHz) case

with k0a = 6.2832. The object is a relatively simple circular dielectric cylinder with

Er = 2 and Ar = 1. The effect that the length of contour C2 has on the SET is

investigated by varying 5. It is anticipated that the accuracy of the SET will be
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Figure 13. Near-Field for Circular Cylinder, Incident Field Integration
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Figure 14. Near-Field for Circular Cylinder, Incident Field Integration
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Figure 15. Near-Field for Circular Cylinder, Incident Field Integration
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greater for smaller C2 since this is similar to integration over the entire contour C.

Figure 16 is the case for k08 = 0.0314, which corresponds to the smallest C2

considered. Notice the excellent agreement between the SET and exact near-field

solutions. Figures 17-19 represent the near-field solutions as 5 is increased. The

results diverge slightly with increasing 8, but a strong correlation still exists between

the SET and exact solutions. Next, the offset distance, d, was increased to k6d =

0.314 for medium frequency (f = 300 MHz). Again, the contour distance parameter,

k 05, was varied between 0.0314 and 0.628. The results for each k05 considered

appear in Figures 20-23. Generally, the near-fields calculated by the SET begin to

diverge slightly from the exact solution. The solutions also become less accurate as

ko5 is increased. Obviously, increasing d has an affect on the accuracy of the SET

which is due, in part, to the inequality koR < < 1.

An increase in the number of nodes will provide a more accurate representation

of the field quanties on the surface of the object. This corresponds to an increased

sampling rate. It is anticipated that the SET program will produce a more accurate

solution to the near-fields in this situation. Tests were conducted using parameters

similar to those evaluated in Figures 15-18, with the exception of an increase in the

number of nodes used. In each case, kod remains constant and k05 is varied.

Figure 24 shows the case for k3 = 0.0314. As expected, the near-field

calculated using the SET closely approximates the exact solution. The remaining

three cases evaluated for increasing 5, shown in Figures 25-27, exhibit a slight

divergence of the SET solution from the exact as 5 is increased, but overall provides
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Figure 16. Near-Field for Circular Cylinder, Scattered Field Integration
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Figure 17. Near-Field for Circular Cylinder, Scattered Field Integration
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Figure 18. Near-Field for Circular Cylinder, Scattered Field Integration
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Figure 19. Near-Field for Circular Cylinder, Scattered Field Integration
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Figure 20. Near-Field for Circular Cylinder, Scattered Field Integration
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Figure 21. Near-Field for Circular Cylinder, Scattered Field Integration
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good results. All four cases, however, exhibit improvement over the corresponding

test cases appearing in Figures 16-19 which use fewer node points. This clearly

demonstrates the importance of the sampling rate requirement.

The effects of increased frequency are considered next. As mentioned

previously, increased frequency has the effect of increasing the electrical length of the

object perimeter, thus requiring more sampling nodes. Three different sampling rates

were considered in these tests. First, an undersampled case was examined with a

sampling rate of less than 1.5 samples per cycle which produced extremely inaccurate

results as illustrated in Figure 28. Increasing the sampling rate has a beneficial effect

on the solution as seen in Figure 29, but the desired accuracy is still lacking. A

sufficient number of samples (approximately 6 per cycle) were taken for the case

depicted in Figure 30 producing an extremely accurate near-field solution for the high

frequency case.

Changing the relative permittivity or permeability should have an effect on the

near field similar to that of frequency. Increased E, or p, should require more nodes.

or a higher sampling rate to accurately represent the near-field. Four test cases were

considered with E, = r = 5. Figure 31 represents the case with the fewest nodes.

The sampling rate was increased in Figures 32-34. Initially, it appears that the low

sampling rate produced the more accurate near-field. However, comparisons at

specific points on the boundary contour indicate that a higher sampling rate yields the

more accurate results.
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Next, a comparison of Equations (20) and (21) was made. The near-field

calculations should be identical for both forms of the SET. Recall that Equation (20)

uses scattered field inside the integral, whereas Equation (21) uses the total field.

Figures 35-38 depict the results for four cases, each calculated using both equations.

As seen in the figures, the results from both equations are almost identical for each

case considered.

In order to make relative comparisons of the test cases above, a quantitative

description of the accuracy was required. The relative error function,

N

1 ,(32)

1

was used to establish a representative quantity to be used in comparisons of

characteristic cases. The relative errors for several cases considered above were

calculated for comparison. Table 5 lists the relative error calculated for the cases

depicted in Figures 16, 19, 24, 25, and 30. The relative error is very small in all cases

indicating good agreement of the exact and SET solutions.
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TABLE 5. ACCURACY OF SET

CASE 7

SF-I 0.064

SF-2 0.057

SF-9 0.065

SF-10 0.0S5

SF-IS 0.058

E. TIMED EVALUATIONS

The last phase of testing and validation were time test. Benchmark elapsed

times were established for representative cases. Elapsed time, as well as accuracy

were also observed for situations in which integration in the asymptotic region of the

contour is bypassed. The integral in Equation (20) is bypassed for source points

greater than EPS1 away from the field point (i.e., k0R > EPSI). Two typical cases

were evaluated for various EPS1.

Table 6 illustrates the sharp decrease in elapsed run time when the integration

routine is bypassed in the asymptotic region. However, the accuracy of the near-field

calculation is extremely degraded as depicted in Figures 39 and 40.
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TABLE 6. SET ELAPSED TIME

CASE EI St TIME (hmns)

SF-24 SET 42:05

0.4wr 2:35

0.6w 3:47

w 6:12

SF-25 SET 3:06:10

4ir 11:28

6w 17:46

iT 29.06

SETf- EPSI bypass not invoked
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VI. CONCLUSIONS

A. RESULTS

The Singularity Extraction Technique proved to be a useful method of

evaluating near-fields for specific cases only. The technique did not consistently

provide accurate results for all test cases, it however worked quite well under certain

conditions.

Results obtained in the case of integration of the incident field on the object

surface were acceptable in the medium frequency range (f = 300 MHz) only.

Observations for other frequencies deviated significantly from theoretical results. An

increase in the sampling rate did, however, demonstrate the convergence of the SET.

Numerous tests were conducted for the implementation of Equation (20).

Some of the key observations are listed below.

1. The SET closely approximated the exact solution in most cases considered as
long as the sampling rate was sufficient and the offset distance remained
relatively small.

2. Significant contributions from both terms of Equation (20) were present in
most cases considered.

3. A sufficient sampling rate (number of nodes) was more critical for accuracy
than the differential element of the numerical integration.

4 Equation (21) produced results equivalent to those of Equation (20).
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5. Exclusion of contributions due to asymptotic regions greatly reduced the
processing time, however, also degraded the accuracy of the near-field solution
beyond acceptable limits.

6. The computer execution times were much longer than anticipated.

B. RECOMMENDATIONS AND EXTENSIONS

The groundwork for developing and testing the SET has been put in place in

this research. Further investigation is required and should include the following:

1. Detailed analysis of the sampling rate requirement.

2. In-depth analysis of specific contributions to the analytic and integral portions
of Equation (20).

3. Incorporate SET into the Field Feedback Formulation [Ref. 11].

4. Investigate the strong effect the offset distance has on the SET near-fields.

5. Evaluate the SET for objects with exact solutions other than the circular
cylinder.

6. Modify the algorithm or computer implementation to yield faster execution
times without sacrificing accuracy.

7. Investigate the relative accuracy between the various available integration
routines utilized.
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APPENDIX A. COORDINATE GENERATION ROUTINES

A. PROGRAM DESCRIPTION

These programs generate the Cartesian coordinates which define the contours

of typically shaped objects. The routines can be used individually in the NEARFLD

program to provide the node points on each contour.

These programs were written by Prof. R. Janaswamy.

B. PROGRAM LISTINGS

The following are listings of four typical routines which can be used to generate

the node points required by the NEARFLD program.

1. Program CIRCLE

PROGRAM CIRCLE
PRINT *, 'READ IN RADIUS OF CIRCLE, # OF POINTS'
READ (5,') A, N
OPEN (UNIT = 1, FILE = 'CIRC', FORM='FORMATTED')
PI = 4. * ATAN (1.)
DELT = 2. * PI / FLOAT (N)
THETA = 0.
DO 11 =1, N
X = A * COS (THETA)
Y = A * SIN (THETA)
WRITE (1,') X, Y
THETA = THETA - DELT
CONTINUE
END

2. Program SQUARE

PROGRAM SQUARE
PRINT *, 'READ IN SQUARE SIDE, NPTS PER SIDE'
READ (5,*) A, NPTS
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OPEN (UNIT = 1, FILE = 'SQR', STATUS = 'UNKNOWN')
B = A/SORT (2.)
DELT =B / FLOAT (NPTS)
DOl 1= 1, NPTS
X =(1-1) * DELT
Y=B -X
WRITE (1,*) X, Y

1 CONTINUE
DO 21 = 1, NPTS
X =B - (I-1) * DELT
Y=X -B
WRITE (1,*) X, Y

2 CONTINUE
DO 31I = 1, NPTS
X =-(1-1) * DELT
Y =- (B + X)
WRITE (1,*) X, Y

3 CONT!NUE
DO 41 = 1, NPTS
X =-(B - (1-1) - DELT)
Y=B+ X
WRITE (1,*) X, Y

4 CONTINUE
END

3. Program SHELL

PROGRAM SHELL
PRINT *, 'READ inner rad, no of pts, outer rad, no of pts, npts'
READ (5,*) A, Ni, B, N2, N
OPEN (UNIT =1, FILE = 'SHELL', FORM ='FORMATTED-)
P1 = 4. *ATAN (1.)
DELT1 P1/ FLOAT (Ni)
DELT2 =PI/ FLOAT (N2)
DELT3 =(B-A) / FLOAT (2 *N)

x 0 .
Y =(A + B) / 2.
DO041 = 1, N + 1
WRITE (1, *) X, Y
Y = Y + DELT3

4 CONTINUJE
THETA PI / 2. - DELT2
DO 1 1 =1, N2
X = B - COS (THr-TA)
Y = B * SIN (THEI A;
WRITE (1,*) X, Y
THETA =THETA - DELT2

1 CONTINUE
DO021 = 1, 2 * N
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Y = Y + DELT3
WRITE (1, -) X, Y

2 CONINUE
THETA =-PI1/2.

DO 31 =1, N2
THETA =THETA + DELT2
X = A * COS (T7HETA)
Y = A * SIN (T7HETA)
WRITE (1,*) X, Y

3 CONINUE
x = 0.
DO 5 1 = 1, N-i
Y = V + DELT3
WRITE (1,*) X, V

5 CONTINUE
END

4. Program SLAB

PROGRAM SLAB
REAL L, T
PRINT *, 'READ LENGTH, # OF SEGS ALONG LENGTH'
READ (5,*) L. Ni
PRINT *, 'READ THICKNESS, # OF SEGS ALONG WIDTH (EVEN)'
READ (5,*) T. N2
OPEN (UNIT = 1, FILE ='SLAB', STATUS ='UNKNOWN')

X=0
VY L / 2.
WRITE (i,-) X, V
N3 = N2 /2
DELT2 = T / FLOAT (N2)
DO 1 1 = 1, N3
X = I * DELT2
WRITE (1 ,*) X, Y

1 CONTINUE
DELTi = L / FLOAT (Ni)
DO 21 =1, Ni
Y= L /2. -1* DELT1
WRITE (1,-) X, V

2 CONTINUE
DO 31 = 1, N2
X =T /2. -1* DELT2
WRITE (i,*) X, V

3 CONINUE
DO 41 = 1, Ni
YV= -L/ 2. + I *DELTI
WRITE (1,*) X, V

4 CONINUE
DO 51I = 1, N3 - 1
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X = -T/2. + I * DELT2
WRITE (1,*) X, Y

5 CONTINUE
END
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APPENDIX B. INFINITE SERIES FIELD SOLUTIONS

The incident and scattered fields (0) and e)) for a uniform plane wave

traveling in the +x direction in free space, incident normally on a lossless dielectric

circular cylinder of radius a, can be found from the infinite series solutions that

follow:

-( 'do j-nJ(kop)eO , (B-1)

and

(s) - d 0o L a.H') (kop) e P , (B-2)
A.--

where

a' j J/(koa)J(kja) - V2J.(koa)J/ (B-3)

i,/a J '(ka) Hn)(koa) - J.(kla) H3"(k 0a)

J,, and H,, are Bessel and Hankel functions of order n, respectively, with normal

derivatives P and H', ko is the free-space wavenumber, and k, is the wavenumber

in the dielectric [Ref. 3]. For the TM case, a = 1/I4r and /3 = c, whereas, for the TE

case, a = l/er and 3 = ,r

The normal derivatives of the field solutions (qij)' and 0S),) can be found from

the following [Ref. 3]:
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-V dzk0W0 E j-aJ(kop)e-ls , (B-4)

-dzk 0oIr Fla.3 J5 (ko p) ell (B-5)
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APPENDIX C. NEARFLD PROGRAM

A. PROGRAM DESCRIPTION

This program prepares the input data for the SET program. It calculates the

required input data and stores it in corresponding matrices. The program asks for

certain quantities to be specified by the user, such as radius, frequency, nodes, etc.

The parameters are outlined in the description block of the program. The program

as it appears here is set up for circular cylindrical geometry. It can, however, be

adapted to another geometry by replacing the subroutine CIRCLE with a suitable

coordinate generation program, such as those in Appendix A.

This program was written by Lt. R. A. Rostant except where previously noted.

B. PROGRAM LISTING

PROGRAM NEARFLD
C
C Program to calculate the scattered field at each of the field points (Q)
C utilizing the SET subroutine. This programs reads the input parameters
C and calculates the input parameters required by the SET routine.
C
C Written by Lt. R. A. Rostant.
C
C Input Parameters:
C A - Radius of cylinder in meters
C FO - Frequency of the incident plane wave in Hertz
C PERND - Number of nodes on the perimeter contour
C LOOPS - Number of iterations of the trapezoid rule
C [2 ̂  (LOOPS-1)]
C FAC - Factor used to determine the upper limit (i summation
C the series solutions (1.5 to 2.0 is generally sufficient)
C ER - Relative permittivity
C MR - Relative permeability
C DELTA - One-haft the length of contour C2 in meters
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C OFFSET -Offset distance, i.e. normal distance between the
C perimeter and boundary contours
C EPS1 - Factor used to determine if the asymptotic regions of
C contour C1 are to be considered in the SET solution
C
C Output:
C FILE1 -Values of the scattered field on the boundary contour
C as calculated by the series solution
C FILE2 - Values of the scattered field on the perimeter contour
C as calculated by the series solution
C FILE3 - Values of the scattered field on the boundary contour
C as calculated by the SET
C FILE4 -Values of the analytic (SIMP7) and integral (SIMPT)
C terms of the SET
C

INTEGER PERNDK,LOOPS
REAL XYSR(365,4),A,FACERMRDELTAPENDS(365,4)
REAL PNODC2(365.2)OFFSET, KOA, KO,EPS1 .C,FO,LAMBDAPI
REAL KORRHO
REAL*8 DADR
COMPLEX PSI(365,2), NEWPSI(365,4),PSIC2(3652),SIMP
COMPLEX SPSI(365),SDPSI(365)

C
COMMON/NODALJXYSRPNODC2,PSIPSIC2
CHARACTER*16 FILE1, FILE2,FILE3,FILE4

C
WRITE(*,*) 'ENTER RADUIS-A (IN METERS)'
READ(*,*) A
WRITE(*,*) 'ENTER FREQUENCY (Hz)'
READ(*,*) F0
WRITE(*.*) 'ENTER # OF NODES-PERND(INTEGER)'
READ(**) PERND
WRITE(*,*) 'ENTER N FOR 2" N-1 ITERATIONS OF TRAPEZOID RULE'
READ(*,*) LOOPS
WRITE(*,*) 'ENTER FACTOR-FAC (REAL)'
READ(*,*) FAC
WRITE(*,*) 'ENTER EPSILON R-ER (REAL)'
READ(*,*) ER
WRITE(*,*) 'ENTER MU R-MR (REAL)'
READ(*,*) MR
WRITE(*,*) 'ENTER DELTA (METERS)'
READ(*,*) DELTA
WRITE(*,*) 'ENTER OFFSET (METERS)'
READ(*,*) OFFSET
WRITE(*,*) 'ENTER EPSILON 1 (METERS)'
READ(*.*) EPS1
WRITE(*,*) 'ENTER EXACT BOUNDARY PSI FILE NAME IN QUOTES
READ(*,*) FILE1
WRITE(*,*) 'ENTER EXACT SCATTERED PERIM PSI FILE NAME IN QUOTES
READ(*,*) FILE2
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WRITE(*,*) 'ENTER CALCULATED BOUNDARY PSI FILE NAME IN QUOTES
READ(,-) FILE3
WRITE(*,*) 'ENTER SIMP7/SIMPT FILE NAME IN QUOTES'
READ(*,-) FILE4

C
OPEN (UNIT=1 ,ILE =FILE1 ,STATUS ='UNKNOWN-)
OPEN (UNIT = 2.FILE= FILE2,STATUS ='UNKNOWN')
OPEN(UNIT=3,FILE =FILE3,STATUS= 'UNKNOWN')
OPEN (UNIT= 4, FILE= FILE4,STATUS ='UNKNOWN')

C
PI=4.O*ATAN(1 .0)
C=2.997925E+08
LAMBDA=C/FO
K0=2*PIILAMBDA
R=A+OFFSET
K0A= A*K0
KOR= R*KO
DA =DBLE(KOA)

DR= DBLE(KOR)
C
C Calculate node coordinates on perimeter and boundary contours
C

CALL CIRCLE (A, PERN D, OFFSET,XYSR)
C
C Calculate scattered field on boundary contour using exact solution
C

CALL SCAT(FAC.ER,MR,PERND,DA,DR,SPSI)
DO 20 J=1,PERND

WRITE(1 '*) CABS(SPSI(J))
20 CONTINUE

C
C Calculate scattered field on perimeter contour using exact solution
C

CALL SCAT(FACER,MR,PERND,DA,DA,SPSI)
DO 30 J=1,PERND

PSI(J,1)=SPSI(J)
WRITE(2,*) CABS (SPSI (J)),SPSI (J)

30 CONTINUE
C
C Calculte normal derivative of scattered field on perimeter contour
C using exact solution
C

CALL DSCAT(FAC,ER,MR.PERND,DA,K0,SDPSI)
DO 40 J=1,PERND

PSI (J,2) =SDPSI(J)
40 CONTINUE

C
C Calculate endnodes of contour C1 k for each node k
C

CALL EN DN ODES (XYSR, DELTA, PERN D, PEN DS)

91



C
C Calculate * and d4/dn corresponding to each endnode generated
C by ENDNODES subroutine
C

CALL NODEPSI(XYSR,PSI,DELTA,PERND,NEWPSI)
C
C Calculate * on boundary contour for each point (node) Ok
C

DO 50 K=1,PERND
WRITE(*,*) 'Calculating scattered field at node' ,k

C
C Reorder the coordinates to reflect the proper order of the nodes
C corresponding to the k'th contour C1 k
C

CALL REORD(XYSR,PENDS,PERND,KPNODC2)
C
C Reorder the values of - and d4f/dn to correspond to the reordered
C nodes
C

CALL CREORD(PSI,NEWPSI,PERND,KPSIC2)
C
C Calculate the scattered field at the k'th field point Ok
C

CALL SET(LOOPS,KO,EPS1 ,PERND,K,DELTA,SIMP)
WRITE(3,*) CABS(SIMP)

50 CONTINUE
STOP
END

SUBROUTINE CIRCLE(KOA,N,OFFSET,XYSR)
REAL XYSR(365,4),KOA,XKOA
XKOA= KOA
P1=4. * ATAN(1.)
DTR=PI/1 80.
STEP =360.0/FLOAT(N)
K= 1
DO 2 J=1,2

M=1
DO 1 S=360.,STEP,-STEP

THETA= DTR*S
X=XKOA*COS(THETA)
Y= XKOA'SIN (THETA)
XYSR(M,K)=X
XYSR(M,K+1)=Y
M=M+1

1 CONTINUE
K=3
XKOA=XKOA+ OFFSET

2 CONTINUE
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RETURN
END

SUBROUTINE SCAT(FAC,ER,MR,NODES,DKOA,DKORMPSI)
C
C Computing 2-D) Dielectric Cylinder * values
C

INTEGER NODES,NPHI,NMX,NMAX,N
REAL*8 J(0:365),J 1 (0:365),Y(0:365),Y1 (0:365),DJ(O:365),

*DJI (o:365),DY(O:365),DY1 (0:365) ,JR(0:365),YR(0:365) ,DJR(0:365),
*DYR(0:365) ,DKOA,DK1 A,DKOR
REAL KOKi,ER,MR,STEP,PI,DTR,A,PHI1 ,PHI2,M
COMPLEX TPSIPSI,MPSI(365)

C
PI=4.0*ATAN(1 .0)
DTR= P1/180.
DK1 A=SQRT(ER*MR)*DKOA
NMX= INT(FAC*DKOA)+ 1
NMAX=NMX+1
CALL BES(NMAX,DKOA,J,Y,DJ,DY)
CALL BES(NMAX,DK1 A,J1 ,Y1 ,DJ1 ,DYl)
CALL BES(NMAX,DKOR,JR,YR,DJR,DYR)
NPHI=NODES+ 1
STEP =360.0/(NPHI-1.)
L=1

C * Stepping Through Phi = 360 to 0 deg
DO 33 M=360.,STEP,-STEP
PHI =DTR*M

C *** Initializing Coefficients
PSI = (DCMPLX(JR(Q),-YR(0)))*((DJ(0)*J1 (Q))-(SQRT(ER/MR)*J(0)*

" DJ 1(0)))/(SQRT(ER/MR)*DJ1 (0)*DCMPLX(J(Q),-Y(0))-J1 (Q)*
" DCMPLX(DJ(Q),-DY(0)))

C **Summing Fields
DO 22 N=1,NMX

TPSI =COS(N*PHI)*(DCMPLX(JR(N),-YR(N)))*1I/((0.,l1.)**N)*
" ((DJ(N)*J 1(N))-(SQRT(ER/MR)*J(N)*DJ 1(N)))/(SQRT(ERIMR)*DJ1 (N)*
" DCMPLX(J(N),-Y(N))-J1 (N)*DCMPLX(DJ(N),-DY(N)))

PSI=PSI +2.0*TPSI
22 CONTINUE

MPSI(L) PSI
L=L+1

33 CONTINUE
RETURN
END

SUBROUTINE DSCAT(FAC, ER,MRNODES,DKOA,K0,MPSI)

C Computing 2-D Dielectric Cylinder scattered d*/dn values
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C
INTEGER NODES,NPHI,NMX,NMAX,N
REAL*8 J(O:365) ,J 1(0:365) 1Y(:365),Yl (0:365),DJ(0:365),

*DJ 1(0:365) .DY(O:365) ,DYl (0:365) ,JR(0:365),YR(O:365) ,DJR(0:365),
*DY(0:365),DKOADKl A
REAL KOK1, ER, MRSTEP, PI, DTR,A, PHI1, ,PHI2,M
COMPLEX TPSI,PSI,MPSI(365)

C
PI=4.0*ATAN(1 .0)
DTR= Pi/l80.
DK1 A=SQRT(ER*MR)*DKOA
NMX=INT(FAC*DKOA)+ 1
NMAX=NMX+1
CALL BES(NMAX,DKOA,J,Y,DJ,DY)
CALL BES(NMAX,DK1 A,J 1,Y1 ,DJ1 ,DY1)
NPHI=NODES+1
STEP =360./(NPHI-1.)
L= 1

Co * Stepping Through Phi =360 to 0 deg
DO 33 M =360.,STEP, -STEP
PHI=DTR*M

C ** Initializing Coefficients
PSI =KO*(DCMPLX(DJ(0),.DY(0)))-((DJ(0)*J1 (0))-(SQRT(ERlMR)*J(O)*

" DJ1 (0)))/(SQRT(ER/MR)-DJ 1(0)*DCMPLX(J(0),-Y(0))-Jl1(0)*.
" DCMPLX(DJ(0),-DY(0)))

C **Summing Fields
DO 22 N=1,NMX

TPSI = KO*COS(N -PH)* (DCMPLX(DJ (N), -DY(N))) * 1l((0., 1 .)**N)*
" ((DJ(N)*J1 (N))-(SQRT(ER/MR)*J(N)*DJI1(N)))/(SQRT(ERIMR)*DJ 1(N)*
* DCMPLX(J(N),-Y(N))-J1 (N)-DCMPLX(DJ(N),-DY(N)))

PSI =PSI +2.0*TPSI
22 CONTINUE

MPSI(L) =PSI
L=L+1

33 CONTINUE
RETURN
END

SUBROUTINE INCI D(FAC, NODES, DKOR, MPSI)
C
C Computing 2-D Dielectric Cylinder incident * values
C

INTEGER NODES, NPHI, NMX, NMAX, N
REAL*8 J(O:365),J 1(0:365),Y(0:365),YI (0:365), DJ(0:365),

*DJ 1 (0:365),DY(0:365),DY1 (0:365),DKOR,R1
REAL K0,K1 ,STEP, PIDTR,A, PHI 1,PHI2, M
COMPLEX TPSI,PSI,MPSI(365)

C
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PI=4.0*ATAN(1 .0)
DTR=PI/1 80.
NMX=INT(FAC*DKOR)+ 1
NMAX=NMX+ 1
CALL BES(NMAX,DKOR,J,Y,DJ,DY)
NPHI=NODES+1
STEP= 360./(NPHI-1.)
L= 1

C **Stepping Through Phi = 360 to 0 deg
00 33 M=360.,STEP,-STEP
PHI=DTR*M

C **Initializing Coefficients
PSI=J(0)

C **Summing Fields
DO 22 N=1,NMX

TPSI=(COS(N*PHI)*J(N))/((0.,1 .)**N)
PSI= PSI +2.0*TPSI

22 CONTINUE
MPSI(L) =PSI
L=L+1

33 CONTINUE
RETURN
END

SUBROUTINE DINCID(FAC, NODES, DKOR,KO, MPSI)
C
C Computing 2-1) Dielectric Cylinder incident d~r/dn values
C

INTEGER NODES, NPHI, NMX, NMAX, N
REAL*8 J(0:365),J1 (0:365),Y(0:365),Y1 (0:365),DJ(0:365),

*DJ1 (0:365),DY(0:365),DY1 (0:365),DKQR,Rl
REAL KO,K,STEP,PI, DTR,A, PHI 1,PHI2, M
COMPLEX TPSI,PSI,MPSI(365)

C
PI=4.0*ATAN(1 .0)
DTR =P1/180.

NMX=INT(FAC*DKOR)+ 1
NMAX=NMX+1
CALL BES(NMAX,DKORJY,DJ,DY)
NPHI=NODES+1
STEP =360./(NPHI-1.)
L= 1

C **Stepping Through Phi =360 to 0 deg
DO 33 M=360.,STEP,-STEP
PHI=DTR*M

C ** Initializing Coefficients
PSI=KO*DJ (0)

C **Summing Fields
00 22 N=1,NMX
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TPSI = (COS(N*PHI)*KO*DJ(N))/((0., 1.)--N)
PSI= PSI +2.0*TPSI

22 CONINUE
MPSI(L) =PSI

L=L+l
33 CONTINUE

RETURN
END

SUBROUTINE BES(N,X,J,Y,DJ,DY)
C
C Double precision calculation of ordinary Bessel functions, Jn(X)
C and Yn(X), and their fir.~! derivative, DJ and DY, for integer
C order Ong from n=0 to N with real argument X.
C

REAL*8 J(O:365) ,Y(O:365) ,DJ (0:365), DY(0:365) ,SCALE,JTEMP2,X
REAL*8 SCLFAC,A,B,C,D,E,F,PI,JTEMP,JTEMP1
Pi=3.141 59265359D0
IF (X.EQ.O.ODOO) THEN

C X = 0.0 BOUNDARY CASE
IF (N.EQ.1) THEN

J(1) = 0.0D00
DJ(1) = 0.5D00

ELSE
DO 5,1 = N, 2, -1

J(I) = 0.ODOO
DJ(I) = 0.ODOO

5 CONTINUE
J(1) = O.ODOO
DJ(1) = 0.5D00
ENDIF
J(0) = 1.ODOO
DJ(0) = 0.0D00
Y(N) = -1.00-300
o i(N) = 1 .0D300

ELSEIF (N.EQ.0) THEN
C POLYNOMIAL EXPANSION ONLY FOR N =0

CALL BESO(X,J,Y,P1,DJ,DY)
ELSE

C RECURSION FOR ALL OTHER CASES
C Y IS A FORWARD RECURSION

CALL BESOKXJ,Y,P1,DJ,DY)
Y(1) = -DY(0)

DY(1)=Y(O) - Y(1)/X
IF (N.EQ.1) GO TO 20
DO 10, 1 = 0, N-2
Y(1+2) = (2.ODOO*(I+1)/X)*Y(1+1) - Y(I)
DY(1+2) = Y(1+1) - ((I+2)/X)*Y(1+2)

10 CONTINUE
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C J IS A REVERSE RECURSION BASED ON A PAIR OF BESSEL FUNCTION
C POINTS DERIVED FROM A TRUNCATED POWER SERIES EXPANSION. THE
C RECURSION IS THEN SCALED TO A KNOWN VALUE, Ji (X).
20 SCALE =-DJ(O)

NSAVE =N

IF (X.LE.N) THEN
N = 5*N+50
GOTO 25

ENDIF
N =IDNINT(N + X*X + 0.5D00)

C
25 A =1.ODO/DFLOAT(N+l)

B = .ODO/DFLOAT(N+2)
C =1 .ODOO/DFLOAT(N-.3)
D =1.ODOO/DFLOAT(N+4)

E =1.ODO/DFLOAT(N+5)

F =X/2.ODOO

C
JTEMP = 1-~A*F**2+ 0.5D00*A*B*F**4-(1 .ODOO/6.ODOO)*A*B*C*F**6+
+ (1 .0D00I24.QDO)*A*B*C*D*F**8-(1 .ODOO/1 20.ODOO)*A*B*C*D*E*F**l 0

C
N =N-1
A = 1.ODO/DFLOAT(N+1)
B =1.ODO/DFLOAT(N+2)
C = I .ODO/DFLOAT(N+3)
D = 1.ODOO/DFLOAT(N+4)
E = 1.ODO/DFLOAT(N±5)
F = XJ/2.0DOO

C
JTEMP1 = 1 -A*F**2+0.5D00*A*B*F**4-(1 .0D0016.ODOO)*A*B*C*F**6+
+ (1 .0D0/24.ODO0)*A*B*C*D*F**8-(1 .ODOO/1 20.ODOO)*A*B*C*D*E*F** 10

C
DO 30, 1 = N+ 1,2,-l
JTEMP2 = 2*((l - 1)IX)*JTEMPI - JTEMP
IF (DABS (JTEMP2).GE. 1 .0D250) THEN

JTEMP2 = JTEMP2*1.0D-250
JTEMP1 =JTEMP1*1.0D-250

ENDIF
JTEMP = JTEMP1
JTEMP1 = JTEMP2
IF ((I-2).LE.NSAVE) THEN

J(1-2) = JTEMP2
ENDIF

30 CONTINUE
C SCALING

N = NSAVE
SCLFAC = SCALE/J(1)
DO 40, I = 0, N
J(I) = SCLFAC*J(I)
IF (I.EQ.0) THEN
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GOTO 40
ENDIF
IF (ABS(J(I)/J(I-1 )).LT. 1.OD-50) THEN

J(I) = J(I)*1.0D250
ELSEIF (ABS(JQI)/J(I-1)).GT.1 .0D50) THEN

J(I) = J(I)*1.0D-250
ENDIF
DJ(I) = J(1-1) - (IIX)-J(I)

40 CONTINUE
ENDIF
RETURN
END

C
SUBROUTINE BESO(X,J,Y,PI,DJ,DY)

C FOR ZERO ORDER BESSEL FUNCTIONS ONLY
DIMENSION J(0:200), Y(0:200), DJ(0:200), DY(0:200)
DOUBLE PRECISION J, Y, X, P1, DJ, DY, FO, Fl, THETAO
DOUBLE PRECISION THETA1, A
IF (X.LE.3.ODOO) THEN
A = X13.ODOO

J(0) = 1 .ODOO - 2.2499997D00*(A**2) + 1 .2656208D00*(A**4)-
+0.31 63866D00*(A**6) + 0.0444479D00*(A**8) - 0.0039444D00*(A**1 0) +
+ 0.00021 DOO*(A**1 2)

Y(0) = (2.ODOO/PI)*DLOG(X/2.ODOO)*J(0) + 0.36746691D00 +
+.60559366D00*IkA**2) - 0.74350384D00*(A**4) + 0.253001 17D00*(A**6)
+ - 0.04261214D00*(A**8) + o.00427916D00*(A**10) - 0.00024846D00*
+ (A**12)

DJ(0) =-X* (. 5D00-0.56249985D00* (A**2) +0.21 093573D00
+*(A**4)- .03954289D00*(A**6) + 0.00443319D00*(A**8) - 0.00031761
+DOO*(A**10) + 0.00001109D00*(A**12))

DY(0) = (-1 .ODOOIX)* ((2.ODOOIPl)*X* DLOG(X/2D00)* (-1 .ODOO*
+ DJ (0))-0.63661 98D0 + 0.2212091 DOO* (A**2) +2.1 682709D00*(A**4) -

+ 1.31 64827D00*(A**6) + 0.3123951 DOO*(A**8) - 0.0400976000*(A** 10)
+ + 0.0027873D00*(A**12))
ELSE
A = 3.ODOO/X

FO = .79788456D00 - 0.00000077D00*A - 0.00552740D00*(A**2)
+ -0.0000951 2D00* (A**3) + 0.001 37237D00*(A**4) -0.00072805DO0* (A* *5)
+ +0,0001 4476D00*(A**6)

THETAG = X - 0.785398 16D00 - 0.041 66397D00*A - 0.00003954
+ DOO* (A**2) + 0.00262573D00* (A**3) - 0.000541 25D00* (A* *4) -
+ 0.00029333D00* (A**5) + 0.0001 3558D00* (A**6)

J(0) = FO*DCOS(THETAO)/DSORT(X)
Y(0) = F0*DSIN(THETAO)/DSORT(X)
Fl = 0.79788456D00 + 0.000001 56D00*A + 0.01 659667D00*A*A

+ +0.0001 71 05D00*(A**3) - 0,00249511 Doo*(A**4) + 0.0011 3653D00
+*(A--5) -0Uu0020O33D00*(A- '6)

THETAI = X - 2.35619449D00 + .12499612D00*A + 0.00005650
+DOO*(A**2) - 0.00637879D00*(A**3) + 0.00074348D00*(A**4) +
+ 0.00079824D00* (A**5) - 0.000291 66D000* (A**6)
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DJ(0) = -FI'DCOS(THETA1)/DSQRT(X)
DY(0) = -Fl*DSIN(THETA1)/DSQRT(X)

ENDIF
RETURN
END

SUBROUTINE ENDNODES(MESH,DELTA,N,PENDS)
C This subroutine computes the new end nodes (x+,y+) and
C (xy-) for each original node on the boundary contour.
C (x+,y+) is the first node in the clockwise direction, a
C distance of 65 away from the corresponding kth node.
C (x-,y) is the last node on the contour C1. The input matrix
C 'MESH' contains (x,y,s ,rk) and the output matrix 'PENDS'
C contains (x4,y,x,y-).
C

REAL MESH (365,4), PENDS (365,4), DELTA, M I,Xl,Y1 ,X2,Y2
REAL ADDER
INTEGER K

C
DO 30 K=1,N

C
IF(ABS(MESH(K, 1) -MESH (K,3)). LT.O.001) THEN

X1 =MESH(K1) +DELTA
X2= MESH(Kl )-DELTA
Yi =MESH (K2)
S1 =X1
S2 =X2

RI =MESH(K,4)
GO TO 20

ENDIF
C

Ml = (MESH (K,4)-MESH (K,2))/(MESH (K,3)-MESH(K, 1))
C

IF(ABS(Ml).LT.O.00l) THEN
X1 =MESH (K,l1)
Y1 =MESH(K,2) +DELTA
Y2 =MESH (K,2)-DELTA
Si =MESH(K,3)
R1 =Y1
R2 =Y2
GO TO 10

ENDIF
C

ADDER= DELTA* M 1/SQRT(1 +M1 **2)
X1 =MESH(K,1) +ADDER
X2= MESH (K, 1) -ADDER
Yi =MESH(K2)-(Xi-MESH(K,1))/M1
Y2= MESH (K,2)-(X2-MESH(K 1 ))/M 1
S1 = MESH(K,3) +ADDER
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S2=MESH(K.,3)-ADDER
RI =MESH(K.4)-(Si -MESH(K.3))/Ml
R2= MESH(K.4)-(S2-MESH(K3))/M1

C
IF((MESH(K,3).GT.MESH(K 1)).AND.(MESH(K 14).GT.MESH(K2))) THEN

PENDS(K1) =AMAX1 (Xi,X2)
PENDS(K2) =AMINi1 (YI,Y2)
PENDS(K3) =AMIN 1 (Xi ,X2)
PENDS(K4) =AMAXi (Vi ,Y2)
GO TO 30

ELSEIF((MESH(K3).LT.MESH(K 1 )).AND. (MESH (K4).LT. MESH(K2)))
" THEN

PENDS(K1) =AMIN1 (Xl ,X2)
PENDSK2) =AMAX1 (Vi ,Y2)
PENDS(K3) =AMAXI (Xl ,X2)
PENDS(K4) =AMIN1 (Vi ,Y2)
GO TO 30

ELSEIF((MESH(K3).GT.MESH(K 1)).AND.(MESH(K4).LT.MESH(K2)))
" THEN

PENDS(K1)=AMIN1 (Xl,X2)
PENDS(K,2) =AMIN1 (Vi ,Y2)
PENDS(K3) =AMAXi (Xl ,X2)
PENDS(K4) =AMAXI (Vi ,Y2)
GO TO 30

ELSE
PENDS(K1) =AMAXI (Xi,X2)
PENDS(K2)=AMAXI (Vi ,Y2)
PENDS(K3) =AMIN1 (Xl ,X2)
PENDS(K4) =AMIN I (Vi ,Y2)
GO TO 30
ENDIF

c
10 IF(MESH(K,3).GT. MESH (K, 1)) THEN

PENDS(K,i)=Xi
PENDS(K,2) =AMINi (Vi ,Y2)
PENDS(K,3) =Xi
PENDS(K,4) =AMAX1 (Vi ,Y2)
GO TO 30

ELSE
PENDS(Kl1) =Xi
PENDS(K,2) =AMAX1 (Vi ,Y2)
PENDS(K3)=Xi
PENDS(K4) =AMIN1 (Vi ,Y2)
GO TO 30

ENDIF
C

20 IF (MESH(K.4).GT. MESH(K2)) THEN
PENDS(Kl) =AMAXI (Xi .X2)
PENDS(K 2) =Yi
PENDS(K,3) =AMIN I (Xi ,X2)
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PENDS(K,4) =Y1
GO TO 30

ELSE
PENDS(KI1) =AMIN1 (Xl ,X2)
PENDS(K2)=Y1
PENDS(K3) =AMAX1 (Xl ,X2)
PENDS(K4) =Yl

ENDIF
C

30 CONTINUE
RETURN
END

SUBROUTINE NODEPSI(XYSR,PSI,DELTA,N,NEWPSI)
C
C Subroutine to calculate values of *, and d*/dn at the new
C endnodes for each node k.
C

REAL DELTA, LMVIN, LPLUS,XYS R(365,4)
INTEGER K,N
COMPLEX PSI (365,2) ,NEWPSI (365,4),SIKSIMIN,SIPLUS,DSIK,DSiMIN
COMPLEX DSIPLUS

C
DO 10 K=1,N

SIK=PSI(K1)
DSIK=PSI(K2)
IF(KEQ.1) THEN

SIMIN=PSI(N,1)
SIPLUS= PSI(2, 1)
DSIMIN=PSI(N,2)
DSIPLUS=PSI(2,2)
LMIN =SQRT((XYSR(N,1)-XYSR(1 ,1))**2+

* (XYSR(N,2)-XYSR(1 ,2))**2)
LPLUS=SQRT((XYSR(2,1 )-XYSR(1 ,1))**2+

* (XYSR(2,2)-XYSR(1 ,2))**2)
ELSEIF(K.EQ.N) THEN

SIMIN=PSI(N-1 .1)
SIPLUS=PSI(1 ,1)
DSIMIN=PSI(N-1 .2)
DSIPLUS=PSI(1 .2)
LMIN =SQRT((XYSR(N-1.1 )-XYSR(N, 1))**2+

* (XYSR(N-1 ,2)-XYSR(N,2))-*2)
LPLUS=SQRT((XYSR(1 .1)-XYSR(N, 1))**2+

* (XYSR(1,2)-XYSR(N,2))**2)
ELSE

SIMIN=PSI(K-1 .1)
SIPLUS-PSI(K+l,l)
DSIMIN=PSI(K-1 .2)
DSIPLUS= PSI(K+ 1,2)
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WMIN =SQRT((XYSR(K-1 ,1 )-XYSR(K 1))**2+
* (XYSR(K-1 ,2)-XYSR(K,2))**2)

LPLUS=SQRT((XYSR(K+ 1,1 )-XYSR(K 1 ))**2+
* (XYSR(K+ 1 ,2)-XYSR(K,2))**2)
ENDIF
NEWPSI(K ) =SIK+ DELTA/LPLUS' (SIPLUS-SIK)
NEWPSI(K2) =DSIK+ DELTAILPLUS* (DSIPLUS-DSIK)
NEWPSI(K3) =SIK+ DELTNILMIN*(SIMIN-SIK)
NEWPSI(K4) =DSIK+ DELT/LMIN*(DSIMIN-DSIK)

10 CONTINUE
RETURN
END

SUBROUTINE REORD(MESH,PENDS,N,KPNODC2)
C
C Subroutine to reorder the perimeter nodes from the start node
C to the stop node on the contour C1. The input matrix 'MESH'
C contains the (x,y) and (s,r) node points. The (x,y) nodes are
C reordered with the new endnodes from 'PENDS' added to the
C beginning and end of the matrix. The k'th node is deleted as
C well and the new matrix is called 'PNODC2'.
C

INTEGER I,J,KN,INDEX
REAL MESH (365,4) ,PENDS(365,4) , PNODC2(36512)

C
PNODC2(1 ,1)=PENDS(K1)
PNODC2(1 ,2) =PENDS(K2)
DO 20 1=2,N-K+1

DO 10 J=1,2
PNODC2(1,J) =MESH (K+ I-i ,J)

10 CONTINUE
20 CONTINUE

C
C AT THIS POINT WE HAVE THE FIRST N-K+1 POINTS IN THE MATRiX
C MESHC2. NOW FILL IN THE LAST K TERMS.
C

INDEX=1
DO 40 I=N-K+2,N

DO 30 J=1,2
PNODC2(I,J) =MESH(INDEX,J)

30 CONTINUE
INDEX=INDEX+ 1

40 CONTINUE
PNODC2(N +1,1) =PENDS(K3)
PNODC2(N+ 1,2) =PENDS(K4)

R C- UR N'

END
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SUBROUTINE CREORD(MESH,ENDSNKMESHC2)
C
C Subroutine to reorder the values of *r and d*/dn at each
C perimeter node from the start node to the stop node on
C contour C1.
C

INTEGER I,J,KN,INDEX
COMPLEX MESH (365,4), ENDS(365,4), MESHC2(365,2)

C
MESHC2(1 .1) =ENDS(K )
MESHC2(1 .2) =ENDS(K2)
DO 20 I=2,N-K+1

DO 10 J=1.2
MESHC2(l,J) =MESH (K+ I-iAJ)

10 CONTINUE
20 CONTINUE

C
C AT THIS POINT WE HAVE THE FIRST N-K+1 POINTS IN THE MATRIX
C MESHC2. NOW FILL IN THE LAST K TERMS.
C

INDEX =1
DO 40 l=N-K+2,N

DO 30 J=1,2
MESHC2(1,J) =MESH(INDEX,J)

30 CONTINUE
INDEX=INDEX+ 1

40 CONTINUE
MESHC2(N+ 1,1) =ENDS(K,3)
MESHC2(N+ 12)=ENDS(K4)
RETURN
END
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APPENDIX D. SINGULARITY EXTRACTION PROGRAM

A. PROGRAM DESCRIPTION

This subprogram calculates the scattered field on the boundary contour of an

arbitrary dielectric object. The program receives the required input data from the

program NEARFLD and calculates the scattered field at the specified point using the

Singularity Extraction Technique developed in Chapter II. The program appears with

a trapezoid rule integration routine (TRAP), however an alternate integration

routine, such as SIMP or CADRE, may be substituted.

This program was written by Lt. R. A. Rostant except where previously noted.

B. PROGRAM LISTING

SUBROUTINE SET(LOOPS,K0,EPSI,SEG,K,DELTA,SIMP)
C Subroutine to calculate the scattered field at the field point
C (QJ utilizing the SET. For each call to SET, the main calling
C program must provide the required input parameters discussed in
C program NEARFLD. SET calculates *(')(Q) by evaluationg the
C analytic and integral terms of the SET equation and summing for
C final result. The integration may be accomplished using any valid
C numerical integration routine. This program performs its
C calculations stictly utilizing the coordinates input in PNODC2 and
C the associated field quantities in PSIC2.
C
C Arguments:
C LOOPS - Number of iterations by trapezoid integration
C [2 - (LOOPS-I)]
C KO - Free-space wavenumber
t , EPS1 - Factor used to determine if the -ymptotic regions
C of contour Cl are considered in the SET solution
C SEG - Number of nodes on the perimeter contour
C K - Number of the node being considered
C DELTA - One-half of the !enth of Cor..ur r"
C SIMP - Calculated scattered field on the boundary
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C contour %*~~
C

EXTERNAL ARGi A,ARGl B,ARG2A,ARG2B,ARG3A,ARG3B
EXTERNAL ARG4A,ARG4B,ARG5A,ARG5B,ARG6A,ARG6B

C
INTEGER SEG,KLLKKLOOPS
REAL X,Y,XKYK.XK1 ,YK1 ,XB,YB,KO,XKO,R,COSTH,SINTH-
REAL LKSSI ,SS2,PI,DELTA,Z,ATDELZ
REAL XYSR(365,4),PNODC2(365,2)
COMPLEX PSI (365.2),PSIC2(365,2)
COMPLEX SIMP,J,SIKDSIKSIK1 ,DSIK1 ,SIMPT,SIO,DSIQ
COMPLEX SIMPi ,SIMP2,SIMP3,SIMP4,SIMP5,SIMP6,SIMP7

C
COMMON/ARGSX,Y,XB,YB,COSTH,SINTH,XKO,XK,YK
COMMON/NODAL/XYSR,PNODC2,PSI,PSIC2

C
J=(O.,1.)
PI=4.0-ATAN(1 .0)
SIMP = (.,O.)
SIMPT= (0.,0.)
XKO = KO

C
C THIS IS THE NODE POINT OF INTEREST AND ITS CORRESPONDING
C NORMAL POINT
C

XB=XYSR(K,1)
YB=YYSR(K2)
X=XYSR(K3)
Y=XYSR(4)
SIO=PSI(Kl1)
DSIQ= PSI(K,2)
Z=SQRT((X-XB)**2 + (Y-YB)**2)
ATDEL.Z=ATAN(DELTAIZ)

C
C CONTRIBUTION FROM CONTOUR C2
C

SIM P7 = -SIQ* (ATDELZ!PI-1. .5) + ((DELTA* DSIQ/PI1)*(ZIDELTA*
*ATDELZ+0.5*ALOG(1 .0+ (Z/DELTA)**2)))

C
C CALCULATE THE CONTRIBUTION FROM EACH INTEGRAL ALONG EACH
C SEGMENT (3k).
C

DO 100 1=1,SEG
XK= PNODC2(I, 1)
YK= PNODC2(I,2)
XKI=PNODC2( + 1,1)
VK1 =PNODC2(1+1,2)
SIK= PSIC2(I, 1)

SIKi =PSIC2(1+1,1)
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DSIK = PSIC2(I+ 1,2)
LK = SORT((XK1 -XK)**2 + (YK1 -YK)**2)
COSTH = (XK1 -XK)/LK
SINTH = (YK1 -YK)/LK
RO=SORT((X-XK)**2 + (Y-YK)**2)
RBO=SQRT((XB-XK)**2 + (VB-YK)**2)
RLK= SQRT((X-XK-LK*COSTH)**2 + (Y-YK-LK*SINTH)**2)
RBLK=SORT((XB-XK-LK*COSTH)**2 + (YB-YKLK*SINTH)**2)
DIFi =XKO*(RO-RBO)
DIF2=XKO*(RLK-RBLK)

C
C ARE THE R AND RBAR VECTORS AT K AND K+1 EQUIVALENT IN LENGTH.
C IF SO, THERE IS NO CONTRIBUTION.
C

IF (ABS(DIF1) .LT. EPSI .AND. ABS(DIF2) .LT. EPSi) THEN
SIMPT= (O.,O.)

ELSE
C
C CALCULATE INTEGRAL 1
C

LL= LOOPS
DO 51 KK=1,LL+1

CALL TRAP(ARG1A,LKSS1,KK)
51 CONTINUE

11= LOOPS
DO 52 KK=1,LL+1

CALL TRAP(ARG1 B,LKSS2,KK)
52 CONT1NUE

SIMPi = (DSIK/(4*J))*(SS1 -J*SS2)
C
C CALCULATE INTEGRAL 2
C

LL= LOOPS
DO 53 KK= 1,LL+ 1

CALL TRAP (ARG2A, LKSS1, KK)
53 CONTINUE

LL= LOOPS
DO 54 KK=1,LL+1

CALL TRAP (ARG23, LKSS2,KK)
54 CONTINUE

SIMP2= ((DSIK1 -DSIK)/(4*J*LK))*(SS1 -J*SS2)
C
C CALCULATE INTEGRAL 3
C

LL= LOOPS
DOSS5 KK=1,LL4-1

CALL TRAP(ARG3A,LKSSI1,KK)
55 CONTINUE

LL= LOOPS
DO 56 KK=iLL+4
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CALL TRAP(ARG3B,LKSS2,KK)
56 CONTINUE

SIMP3= ((XKO*SIK*SINTH)/(4*J))*(SS1 J*SS2)
C
C CALCULATE INTEGRAL 4
C

LL= LOOPS
DO 57 KK=1,LL+1

CALL TRAP(ARG4A,LKSS1 ,KK)
57 CONINUE

LL= LOOPS
DO 58 KK=1,LL+1

CALL TRAP (ARG4B,LKSS2,KK)
58 CONTINUE

SIMP4 = ((XKO*SIK*COSTH)/(4*J)) *(SS1 -J*SS2)
C
C CALCULATE INTEGRAL 5
C

LL= LOOPS
DO 59 KK=1,LL+1

CALL TRAP (ARG5A, LKSS1, ,KK)
59 CONTINUE

LL= LOOPS
DO 60 KK=1,LL+1

CALL TRAP (ARG53, LK SS2, KK)
60 CONTINUE

SIMPS= (((SIKi .SIK)*SINTH*XKO)/(4*J*LK))*(SS1 -J*SS2)
C
C CALCULATE INTEGRAL 6
C

LL= LOOPS
DO061 KK= 1,LL+ 1

CALL TRAP (ARG6A, LKSS 1,KK)
61 CONTINUE

LL= LOOPS
DO 62 KK=1,LL+1

CALL TRAP (ARG63, LK,SS2,KK)
62 CONTINUE

SIMP6= (((SIKi -SIK)*COSTH*XKO)/(4*J*LK))*(SS1 -J*SS2)
C

SIMPT= SIMPT-SIMP I -SIM P2-SIMP3 +SIMP4-SIMP5+ SIMP6
ENDIF

100 CONTINUE
WRITE(4, 110) SIMP7,SIMPT,CABS(SIMP7),CABS(SIMPT)
SIMP=SIMP7-SIMPT

110 FORMAT('(',f8.5,l1x,f8.5,')',2x,'(',f8.5,l1x,f8.5,')',2x~f8.5, lx,
Cf 8.5)
RETURN
END
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SUBROUTINE TRAP(FUNC,B,S,N)
C
C Computes the N'th stage of refinement of an extended trapezoidal
C rule. FUNC is input as the name of the function to be integrated
C between limits 0 and B, also input. (Can be modified for limits
C A to B.) When called with N = 1, the routine returns as S the crudest
C estimate of the integral. Subsequent call with N=2,3,... (in that
C sequential order will improve the accuracy of S by adding 2 N-2
C additional interior points. S should not be modified between
C sequential calls. Yields 2 N-i segments.
C

lF(N.EQ.I) THEN
=05*B*(FUNC(0.) +FUNC(B))

rr=I
ELSE

TNM=rr
DEL=B/TNM
TAU =0.5*DEL
SUM=0.
DO 30 J=1,IT

SUM=SUM +FUNC(TAU)
TAU=TAU +DEL

30 CONTINUE
S=0.5*(S+ B*SUM/TNM)
[T=2*IT

ENDIF
RETURN
END

REAL FUNCTION ARGIA(T
C
C COMPUTES - ARGUMENT FOR INTEGRAL 1
C

REAL R,RB,JO,JOB
COMMON /ARGSXY,XBYB,COSTH,SINTH,XKO,XKYK
XP=T*COSTH+XK
YP=T*SINTH+YK
R=SORT((X-XP)**2+ (Y-YP)**2)
RB=SQRT((XB-XP)**2+ (YB-YP)**2)

JO= BESSJO(XKO*R)
JOB= BESSJO(XKO* RB)
ARGI A=JO-JOB
RETURN
END

REAL FUNCTION ARGi B(T
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C
C COMPUTES ARGUMENT FOR INTEGRAL 2
C

REAL R,RB,YO,YOB
COMMON /ARGS/X,Y,XB,YB,COSTH,SINTH,XKO,XKIYK
XP =T*COSTH +XK
YP=T*SINTH+YK
R=SQRT((X-XP)**2+ (Y-YP)**2)
RB=SQRT((XB-XP)**2+ (YB-YP)*-2)

YO=BESSYO(XKO*R)
VOB =BESSYO(XKO* RB)
ARGi B=YO-YOB
RETURN
END

REAL FUNCTION ARG2A(T)
C
C COMPUTES ARGUMENT FOR INTEGRAL 3
C

REAL R,RB,JO,JOB
COMMON /ARGS/X,Y,XB,YB,COSTH,SINTH ,XKO,XK,YK
XP =T*COSTH +XK
YP=T*SINTH+YK
R=SQRT((X-XP)**2+ (Y-YP)**2)
RB =SQRT((XB-XP)**2+ (YB-YP)**2)

JO =BESSJO(XKO* R)
JOB =BESSjOk'XKO* RB)
ARG2A= (JO-JOB)-T
RETURN
END

REAL FUNCTION ARG2BMT
C
C COMPUTES ARGUMENT FOR INTEGRAL 4
C

REAL R,RB,YOXYOB
COMMON IARGSJX,Y,XBYB,COSTH,SINTH,XKO,XKYIK
XP=T*COSTH+XK
YP=T*SINTH +YK
R=SQRT((X-XP)**2+ (Y-YP)**2)
RB= SQRT((XB-XP)**2+ (YB-YP)**2)

YO =BESSYO(XKO* R)
VOB= BESSYO(XKO* RB)
ARG2B= (YO-YOB)*T
RETURN
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END

REAL FUNCTION ARG3Ar
C
C COMPUTES ARGUMENT FOR INTEGRAL 5
C

REAL R,RB,J1,JlB
COMMON /ARGSIX,V,XB,VB,COSTH,SINTH,XKO,XKX"K
XP=T*COSTH+XK
VP =T*SINTH +VK
R=SORT((X-XP),*2+ (YYP)**2)
RB=SQRT((XB-XP)**2+ (YB-YP)**2)

COJi =(X-XP)IR
COJi B=(XB-XP)/RB

JI =BESSJ1(XKO*R)
Ji B=BESSJ1 (XKO*RB)
ARG3A= (Ji *COJ1 )-(J1 B*COJ1 B)
RETURN
END

REAL FUNCTION ARG3B3(T)
C
C COMPUTES ARGUMENT FOR INTEGRAL 6
C

REAL R,RB,VI ,V1 B
COMMON /ARGSX,Y,XB,YB,COSTH,SINTH,XKO,XKVK
XP=T*COSTH+XK
VP=T*SINTH+VK
R =SQRT((X-XP)**2+ (Y-YP)**2)
RB=SQRT((XB-XP)**2+ (YB-YP)**2)

COJi = (X-XP)IR
COJi B= (XB-XP)/RB

Y1 =BESSY1 (XKO*R)
Vi B=BESSY1 (XKO* RB)
ARG3B=(YI *COJ1)-(YlB*COJ1B)
RETURN
END

REAL FUNCTION ARG4A(T)

C COMPUTES ARGUMENT FOR INTEGRAL 7
C

REAL R,RBJ1,J1B
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COMMON /ARGSIX,Y,XB,YB,COSTH,SINTH,XKO,XKYK
XP=T*COSTH+XK
YP=T*SINTH+YK
R=SQRT((X-XP)**2+ (Y..YP)**2)
RB=SQRT((XB-XP)**2+ (YB-YP)*2)

COJi =(Y-YP)/R
COJl1B =(YB-YP)/RB

Ji =BESSJI (XKO*R)
JI B=BESSJ1 (XKO*RB)
ARG4A=(J1*COJ1)-(J1B*COJ1 B)
RETURN
END

REAL FUNCTION ARG4B3(T)
* C

C COMPUTES ARGUMENT FOR INTEGRAL 8
C

REAL R,RB,Y1,Y1B
COMMON /ARGS/XY,XB,YB,COSTH,SINTH,XKO,XK,YK
XP=T*COSTH+XK
YP=T*SINTH +YK
R=SORT((X-XP)**2+ (Y-YP)**2)
RB =SQRT((XB-XP)**2+ (YB-YP)**2)

COJi =(Y-YP)/R
COJI B= (YB-YP)/RB

Yl =BESSY1 (XKO*R)
YI B=BESSY1 (XKO*RB)
ARG4B=(Y1 *COJ1) (Vi B*COJl B)
RETURN
END

REAL FUNCTION ARG5AMT
C
C COMPUTES ARGUMENT FOR INTEGRAL 9
C

REAL R,RB,J 1,J 1B
COMMON /ARGSIX.Y,XB,YB,COSTH,SINTH,XKO,XKYK
XP=T*COSTH+iXK
YP =T*SINTH +YK
R=SQRT((X-XP)**2+ (Y-YP)**2)
RB=SQRT((XB.XP)**2+ (YB-YP)**2)

COJ 1 = (X-XP)/R
COJi B= (XB-XP)/RB



J I = BESSJ I (XKO* R)
JIB=BESSJ1 (XKO*RB)
ARG5A= ((Ji *COJi )-(J 1 B*COJ1 B))*T
RETURN
END

REAL FUNCTION ARG5B(T
C
C COMPUTES ARGUMENT FOR INTEGRAL 10
C

REAL R,RB,Y1 ,Y1 B
COMMON /ARGS/XY,XB,YB,COSTH,SINTH,XKO,XKYK
XP =T*COSTH +XK
YP=T*SINTH+YK
R=SQRT((X-XP)**2+ (Y-YP)**2)
RB =SQRT((XB-XP) **2+ (YB-YP) **2)

COJi1 = (X-XP)IR
COJl1B =(XB-XP)IRB

Yi =BESSY1 (XKO*R)
Vi B=BESSY1 (XKO*RB)
ARG5B= ((Vi *COJ1 )-(YI B*COJ1 B))*T
RETURN
END

REAL FUNCTION ARG6A(T
C
C COMPUTES ARGUMENT FOR INTEGRAL 11
C

REAL R, RB,J 1,J 1B
COMMON IARGS/XY,XB,YB,COSTHSINTH,XKO,XK,YK
XP=T*COSTH+XK
YP=T*SINTH+YK
R=SQRT((X-XP)**2+ (Y-YP)**2)
RB =SQRT((XB-XP)**2+ (YB-YP) **2)

COJi (Y-YP)IR
COJ IB =(YB-YP)IRB

Ji =BESSJI(XKO*R)
Ji B=BESSJ1 (XKO*RB)
ARG6A= ((Ji *COJ1 )-(J1 B*COJ1 B))*T
RETURN
END

REAL FUNCTION ARG6B(T
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C
C COMPUTES ARGUMENT FOR INTEGRAL 12
C

REAL R,RB,Y1,Y1 B
COMMON /ARGSIX,Y,XB,YB,COSTH,SINTH,XKO,XKYK
XP=T*COSTH+XK
YP=T*SINTH +YK
R=SQRT((X-XP)**2+ (Y-YP)**2)
RB=SQRT((XB-XP)**2+ (YTBYP)**2)

COJi =(Y-YP)IR
COJI1B =(YB-YP)/RB

Y1 = BESSY1 (XKO*R)
Y1 B=BESSY1 (XKO*RB)
ARG6B= ((Y1 *COJ1).(Y1 B*COJ1 B))*T
RETURN
END

FUNCTION BESSJO(X)
REAL*8 Y,P1 ,P2,P3,P4,P5,O1 ,Q2,Q3,Q4,05,R1 ,R2,R3,R4,R5,R6,

* 51 ,S2,S3,S4,S5,S6
DATA P1 ,P2,P3,P4,P5/1 .DO,-. 1098628627D-2,.273451 0407D-4,

*-.2073370639D-5,.209388721 1 D-6/, 01 ,Q2,Q3,Q4,Q5/-. 1562499995D-

*.1430488765D-3,-.691 1147651 D-5,.7621 095161 D-6,-.9349451 52D-7/
DATA Ri, R2,R3,R4,R5,R6/57568490574.DO,-1 3362590354. DO,651 61 9640.7D

*0,
" -11214424.1 8D0,77392.3301 7D0,-1 84.9052456D0/,
" 51 ,S2,S3,S4,S5,S6/5756849041 1.DO,1 029532985. DO,
" 9494680.71 8D0,59272.64853DO,267.853271 2D0, 1.DO!
IF(ABS(X).LT.8.)THEN

Y=X**2
BESSJO= (Ri +Y*(R2+Y*(R3+Y*(R4+Y*(R5+Y*R6)))))

* /(S1 +Y*(S2+Y*(S3+Y*(S4+Y*(S5+Y*S6)))))
ELSE

AX =ABS (X)
Z=8./AX
Y=Z**2
XX=AX-.785398164
BESSJO =SORT(. 63661 97721AX) *(COS (XX) *(P 1 4Y*(P2+Y*(P3+Y*(P4+Y

* *P5)))).Z*SIN(,())*(Q1 + Y*(Q2+Y*(Q3+Y*(Q4+Y*05)))))
ENDIF
RETURN
END

FUNCTION BESSYO(X)
REAL*8 Y,P1 ,P2,P3,P4,P5,QI ,02,03,04,Q5,R1 ,R2,R3,R4,R5,R6,
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* S1,S2,S3,S4,S5,S6
DATA P1 ,P2,P3,P4,P5/1 .00,-. 1098628627D-2,.273451 0407D-4,

* .2073370639D-5,.209388721 10D-6/, 01 ,Q2,Q3,Q4,Q5/-.1 562499995D-
*1,
* .1 430488765D-3,-.691 1147651 D-5,.7621 095161 D-6,-.9349451 52D-7/
DATA RI ,R2,R3,R4,rl5,R6/-2957821 389.DO,7062834065. DO,-51 2359803.6D0

*10879881 .29D0,-86327.92757D0,228.4622733D0/,
" Si ,S2,S3,S4,SS6/40076544269.DO,745249964.DO,
" 7189466.43800,47447.2647000,226.103024400,1.00/
IF(X.LT.8.)THEN

Y=X**2
BESSY0= (Ri +Y*(R2+Y*(R3+Y*(R4+Y*(R5+Y*R6)))))/(S1 +Y*(S2+Y
* *(S3 +Y* (S4 +Y* (S5 +Y*S6))))) + .63661 9772* BESSJO(X) *LOG (X)

ELSE
Z=8./X
Y=Z**2
XX=X-.7853981 64
BESSYO =SQRT(.636619772X) *(SIN (XX) -(P1 +Y*(P2+Y*(P3+Y*(P4+Y*

* P5)))) +Z*COS(XX)*(Q1 +Y*(Q2+Y*(Q3+Y*(Q4+Y*Qs)))))
ENDIF
RETURN
END

FUNCTION BESSJ1(X)
REAL*8 Y,P1 ,P2,P3,P4,P5,O1 ,Q2,03,Q4,QS,R1 ,R2,R3,R4,R5,R6,

* S1,S2,S3,S4,S5,S6
DATA Rl1,R2, R3,R4, R5,R6/7236261 4232.00, -7895059235.00,242396853.100O

" -2972611.43900, 1 5704.4826000, -30. 1603660600/,
" 51.52,S3,S4,55,56/144725228442.00,2300535178.00,

*18583304.7400,99447.4339400,376.999139700,1.00/

DATA P1 ,P2,P3,P4,P5/1 .00,. 1831 05D-2,-.351 63964960-4,.24575201740-5

*-.240337019D-6/, 01 ,Q2,Q3,04,QS/.04687499995DO,-.2002690873D-3

*.84491990960-5,-. 882289870.6,. 1057874120-6/
IF(ABS(X).LT.8.)THEN

Y=X**2
BESSJ1 =X*(R1 +Y*(R2+Y*(R3+Y*(R4+Y*(R5+Y*R6)))))
* /(S1 +Y*(S2+ Y*(S3+Y* (S4+Y*(SS+Y*S6)))))

ELSE
AX=ABS(X)
Z=8./AX
Y=Z**2
XX=AX-2.3561 94491
BESSJ1 =SORT(. 63661 9772/AX) *(COS (XX) -(P 1 +Y*(P2+Y*(P3+Y*(P4+Y
* *P5))))..Z*SIN(XX)*(Q1 +Y*(Q2+Y*(Q3+Y*(Q4+Y*Os)))))
* *SIGN(1.X)
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ENDIF
RETURN
END

FUNCTION BESSYl (X)
REAL-8 Y,P1 ,P2,P3,P4,P5,OI ,Q2,Q3,Q4,Q5,R1 ,R2,R3,R4,R5,R6,

* SI ,S2,S3,S4,S5,S6,S7
DATA P1 ,P2,P3,P4,P5/1 .DO,. 1831 05D-2,-.351 6396496D-4,.24575201 74D-5

*-.24033701 9D-6/, 01 ,Q2,Q3,04,051.04687499995D0,-.2002690873D-3

*.84491 99096D-5,-.88228987D-6,. 10578741 2D-6/
DATA RI ,R2,R3,R4,R5,R6/-.4900604943D1 3,. 1275274390D1 3,-.51 53438139

*Dl1,
* .7349264551 D9,-.4237922726D7,.851 1937935D4/,

*Si ,S2,S3,S4,S5,S6,S7/.2499580570D1 4,.424441 9664D1 2,
* .3733650367Dl1 ,.2245904002D8,.1 020426050D6, .3549632885D3, 1. DO!
IF(X.LT.8.)THEN

Y=X**2
BESSYl =X*(Ri +Y*(R2+Y*(R3+Y*(R4+Y*(R5+Y*R6)))))/(S1 +Y*(S2+Y*

* (S3+Y*(S4+Y*(S5+Y*(S6+Y*S7)))))) +.636619772
* (BESSJ1 (X)*LOG(X)1 ./X)

ELSE
Z=8./X
Y=Z**2
XX=X-2.3561 94491
BESSYl =SQRT(.63661 9772/X)*(SIN(XX)*(P1 +Y*(P2+Y*(P3+Y*(P4+Y

* *P5)))) +Z*COS(XX)*(01 +Y*(02..Y*(Q3+Y*(Q4+Y*Q5)))))
ENDIF
RETURN
END
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APPENDIX E. EXPANDED FORM OF SET INTEGRAL TERM

The following 12 expressions are an expanded form of the SET integral term

in Equation (20) from Chapter II.

'P1-J0 (E-1)
f [koR) Jo(ko) ] du

+* f[Y k0R)- Yo(kor)du (]du
u-O

f[JkR) - J udu(E

*/__- *k (E-4)

( jf[Y kOR) - Ys ( uu

4 kkO lRk I& _- (x - x') J,(kj) (V - x) du (E-5)
4j - R R

+ kkOStn6k (_ _ _ Y/ (i-xf]du (E-6)
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+,* oO _O__Ij _(y - y') - (T_ y1 du (E-7)

_ 'k.o[ __(___) (' Y 1 (k0R-  (5--Y,]d (, E-8)

(*k"l-WA)ksi0l k (Io[J ' k° R)(x x,) k R- ) (x- x']udu (E9

~J' R

(*kS - (E8)k)srn'k jY ( -JO

+ (Wk+I" -Y WkkcO- 'YJlO ) I) Alkk~Y~uU (-

4 j f -o R R

(*k. )koC°os°, f k Y () ( udu (E-92)

4 k R R

where J1) and J1 are Bessel Functions of order zero and one, respectively. . und Y;:

are Neumann Functions of order zero and one, respectively, €/, and 'Pk' are the

scattered field and its normal derivative on the k-th segment, as in Figure 5 from

Chapter III, and 1k is the length of segment Sk.
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APPENDIX F. INCIDENT FIELD INTEGRATION PROGRAM

A. PROGRAM DESCRIPTION

This program calculates the scattered field from a circular cylinder by utilizing

the Green's Function Integral of Equation (2) where #r = .

This program was written by Lt. R. A. Rostant. The subroutine HAN I was

written by Prof. M. A. Morgan.

B. PROGRAM LISTING

PROGRAM INTEST
C
C Program to calculate the scattered field from a circular cylinder
C utilizing the Green's function contour integral for ~-4~~
C

INTEGER NSEG
REAL PI,C,RA, RP, DPHIP,ARCLEN, PHIP,FREQ, LAMBDA, KO,CP,R,CA, NODES
REAL PHI,DPHI
COMPLEX J,PSI,DPSI,HHO,HHI ,F,FTOT,INT,RC

C

PI=4.O*ATAN(1 .0)
C =2.997925E +08

OPEN (UNIT = 10 OFILE = 'IN DATA',STATUS = 'UNKNOWN')
WRITE(-,-) 'ENTER INNER CYLINDER RADIUS (kr *rho units):'
READ(-,-) RA
WRITE(-,,) 'ENTER O'JTER CYLINDER RADIUS (ko*rho units):'
READ(*,,-) RP
WRITE(-,-) 'ENTER NUMBER OF NODES'
READ(-,-) NOn::
WRITE(*,-) 'ENTER NUMBER OF INTEGRATION SEGMENTS:'
READ(-,-) NSEG
WRITE(-,-) 'ENTER FREQUENCY (Hz):'
READ(-,-) FREO

C
SUM'=0.0
LAMBDA= C/FREQ

.... .. ... .... 1 1..



KO=2*PI/LAMBDA
ARCLEN=2*PI*RA/NSEG
DPHI=2.o*P/(NODES-1 .0)
DPHIP =2.0*PI/NSEG
DO 2 L=1,NODES-1

FTOT= (0.0,0.0)
PHI=-(L-1)*DPHI
DO 1 I=0,NSEG-1

PHIP=-(I-0.5)*DPHIP
CP=COS(PHIP-PHI)
PSI =EXP(-J*RA*CP)

DPSI=-J*KO*CP*PSI
C THIS IS ACTUALLY KoR

R=SQRT(RP*RP+ RA*RA-2.*RP*RA*CP)
CA= (RA-RP*CP)/R
RC=CMPLX(R)
CALL HANi (RC,HHO,HH1)
F=((J/4*HHO) * DPSI) - (PSI * (-J*KO/4) *HH1 *CA)

FTOT=FTOT+F
1 CONTINUE

INT= FTOT*ARCLEN
DEG=360. + (PHI*1801P1)
WRITE(1 0,22) DEG,CABS(INT)
SUM =SUM +CABS(INT)

2 CONTINUE
PSIAVG=SUM/(NODES-1)
WRITE(1O,*) 'PSIAVG =',PSIAVG

22 FORMAT(F7.1.4X,F9.6)
STOP
END

SUBROUTINE HANi (Z,HO,Hl)
C
C Computing Hankel Functions for n=0,1 with
C Complex Argument, Z. Direct Power Series Method for
C CABS(Z) .LE. 5 and Hankel's Asymptotic Formula for
C CABS(Z) .GT. 5. Written 11/6/87 by M.A. Morgan
C

INTEGER M,M2
REAL C(34),DM,F(34),GO,P(34),Pi,P2
COMPLEX Z,Z2,Z3,Z4,JO,Jl1,YO,Y1 ,AM,CL, POPi00,01
COMPLEX EO,E1 ,XO,X1 ,HO,H1 ,j
P1=3.1415927
P2=2.0/Pl

IF(CABS(Z).LE.5.0) THEN
C
C Direct Power Series Method
C
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GO= 1.78072
Z2=05*Z
CL= CLOG (GO*Z2)

C
C Computing F(m) = m ! and P(m)= 1 + 1/2 + 1/3+.+ 1/rn
C

1()=.0
P()1.0

DOl11 M=2,34
F(M) =M*F(M-1)
P(M)=P(M-1)+1.O/M

11 CONINUE
C
C Computing Power Series Coefficients
C

DM=-1.0
DO 22 M =1,34

C(M) =DM/(F(M)*F(M))

DM=-DM
22 CONTINUE
C
C Computing JO and Ji
C

JO=(1 .,0.)
i = (0., 0.)
M=0

33 M=M+1
M2=2*M
AM=C(M)-(Z2--M2)
JO=JO+AM
Ji =J1 -MAM
IF ((CABS (AM).GT. 1.OE-1O0).AN D. (M. LT.34)) GO TO 33
Ji =J1/Z2

C
C Computing YO and YI
C

M=O
YO=CL*JO
Y1 =Z2*CL*J1-O.5*JO

44 M=M+1
M2=2*M
AM=C(M)-P(M)-(Z2--M2)
YO=YO-AM
Y1 =Y1 +M*AM
IF ((CABS (AM). GT. 1. OE- 10). AND. (M. LT.34)) GO TO 4
YO= P2*YO
Vi =P2*Y1/Z2
HO=JO-j*YO
Hi =J1-I*Y1
RETURN
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ELSE
C
C HankelF Asymptotic Formula (Abram. & Stegun p. 36-4)
C

Z2=Z*Z
Z3=Z*Z2
Z4=Z*Z3
PO= 1.0-.0703125/Z2+.1121521 /Z4
00= -. 125/Z+.0732422/Z3
PIl=1.0+.ll171B75IZ2-.1441956IZ4
01 =.375/Z-. I0253906/Z3
Xo=(Z-.25*PI)
X1 (Z-75*PI)
EO=CEXP(-j*Xo)
El =CEXP(-I*Xl)
AM =CSORT(P2/Z)

HO= AM* (PO-I*QO) *EO
Hi =AM*(P1 -j*Q1)*E1

ENDIF
C

RETURN
END
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